cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064116 Composite numbers whose sum of aliquot divisors as well as product of aliquot divisors is a perfect square.

This page as a plain text file.
%I A064116 #29 Dec 09 2024 15:25:31
%S A064116 12,75,76,124,147,153,176,243,332,363,477,507,524,575,688,867,892,963,
%T A064116 1075,1083,1421,1532,1573,1587,1611,1916,2032,2075,2224,2299,2401,
%U A064116 2421,2523,2572,2883,2891,3100,3479,3776,3888,4107,4336,4527,4961,4975,5043
%N A064116 Composite numbers whose sum of aliquot divisors as well as product of aliquot divisors is a perfect square.
%H A064116 Amiram Eldar, <a href="/A064116/b064116.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1000 from Harry J. Smith)
%e A064116 75 is a term because the sum of the aliquot divisors of 75 = 1 + 3 + 5 + 15 + 25 = 49 = 7^2 and the product of the aliquot divisors of 75 = 1*3*5*15*25 = 75^2.
%t A064116 Do[d = Delete[ Divisors[n], -1]; If[ !PrimeQ[n] && IntegerQ[ Sqrt[ Apply[ Plus, d]]] && IntegerQ[ Sqrt[ Apply[ Times, d]]], Print[n]], {n, 2, 10^4} ]
%t A064116 spsQ[n_]:=Module[{d=Most[Divisors[n]]},CompositeQ[n]&&AllTrue[{Sqrt[ Total[ d]],Sqrt[Times@@d]},IntegerQ]]; Select[Range[5100],spsQ] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, Feb 14 2018 *)
%o A064116 (PARI) isok(k) = { my(s=sigma(k) - k); s>1 && issquare(s) && issquare(vecprod(divisors(k)[1..-2])) } \\ _Harry J. Smith_, Sep 07 2009
%Y A064116 Intersection of A048699 and A064499.
%Y A064116 Cf. A001065, A007956.
%K A064116 base,easy,nonn
%O A064116 1,1
%A A064116 _Shyam Sunder Gupta_, Sep 09 2001
%E A064116 More terms from _Robert G. Wilson v_, Oct 05 2001