This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A064116 #29 Dec 09 2024 15:25:31 %S A064116 12,75,76,124,147,153,176,243,332,363,477,507,524,575,688,867,892,963, %T A064116 1075,1083,1421,1532,1573,1587,1611,1916,2032,2075,2224,2299,2401, %U A064116 2421,2523,2572,2883,2891,3100,3479,3776,3888,4107,4336,4527,4961,4975,5043 %N A064116 Composite numbers whose sum of aliquot divisors as well as product of aliquot divisors is a perfect square. %H A064116 Amiram Eldar, <a href="/A064116/b064116.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1000 from Harry J. Smith) %e A064116 75 is a term because the sum of the aliquot divisors of 75 = 1 + 3 + 5 + 15 + 25 = 49 = 7^2 and the product of the aliquot divisors of 75 = 1*3*5*15*25 = 75^2. %t A064116 Do[d = Delete[ Divisors[n], -1]; If[ !PrimeQ[n] && IntegerQ[ Sqrt[ Apply[ Plus, d]]] && IntegerQ[ Sqrt[ Apply[ Times, d]]], Print[n]], {n, 2, 10^4} ] %t A064116 spsQ[n_]:=Module[{d=Most[Divisors[n]]},CompositeQ[n]&&AllTrue[{Sqrt[ Total[ d]],Sqrt[Times@@d]},IntegerQ]]; Select[Range[5100],spsQ] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, Feb 14 2018 *) %o A064116 (PARI) isok(k) = { my(s=sigma(k) - k); s>1 && issquare(s) && issquare(vecprod(divisors(k)[1..-2])) } \\ _Harry J. Smith_, Sep 07 2009 %Y A064116 Intersection of A048699 and A064499. %Y A064116 Cf. A001065, A007956. %K A064116 base,easy,nonn %O A064116 1,1 %A A064116 _Shyam Sunder Gupta_, Sep 09 2001 %E A064116 More terms from _Robert G. Wilson v_, Oct 05 2001