cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064127 Number of divisors of 11^n - 1 that are relatively prime to 11^m - 1 for all 0 < m < n.

This page as a plain text file.
%I A064127 #8 Jan 18 2019 13:56:37
%S A064127 4,2,4,2,2,2,4,2,2,2,4,4,4,2,2,4,2,2,2,2,8,16,8,4,8,8,2,8,4,4,8,4,8,8,
%T A064127 4,2,16,16,64,4,128,2,4,4,2,16,8,16,8,4,16,2,16,4,16,16,4,8,8,2,8,16,
%U A064127 32,8,4,16,16,16,8,48,32,8,2,4,16,4,4,8,8,4
%N A064127 Number of divisors of 11^n - 1 that are relatively prime to 11^m - 1 for all 0 < m < n.
%H A064127 Sam Wagstaff, Cunningham Project, <a href="https://homes.cerias.purdue.edu/~ssw/cun/">Factorizations of 11^n-1, n odd, n<240</a>
%t A064127 a = {1}; Do[ d = Divisors[ 11^n - 1 ]; l = Length[ d ]; c = 0; k = 1; While[ k < l + 1, If[ Union[ GCD[ a, d[ [ k ] ] ] ] == {1}, c++ ]; k++ ]; Print[ c ]; a = Union[ Flatten[ Append[ a, Transpose[ FactorInteger[ 11^n - 1 ] ][ [ 1 ] ] ] ] ], {n, 1, 42} ]
%o A064127 (PARI) a(n) = sumdiv(11^n-1, d, vecsum(vector(n-1, k, gcd(d, 11^k-1) == 1)) == n-1); \\ _Michel Marcus_, Jun 23 2018
%Y A064127 Cf. A063982.
%K A064127 nonn
%O A064127 1,1
%A A064127 _Robert G. Wilson v_, Sep 10 2001
%E A064127 a(43)-a(80) from _Jon E. Schoenfield_, Jun 23 2018