cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064137 Number of divisors of 12^n + 1 that are relatively prime to 12^m + 1 for all 0 < m < n.

This page as a plain text file.
%I A064137 #16 Jan 18 2019 13:56:37
%S A064137 2,2,4,4,4,2,2,4,8,4,2,2,4,8,4,8,4,4,4,8,16,8,16,8,8,16,8,32,2,4,2,4,
%T A064137 4,32,4,2,8,8,8,16,2,16,2,16,4,8,2,16,8,4,32,16,8,16,32,16,64,16,32,
%U A064137 32,4,16,16,16,32,8,16,8,8,64,16,4,16,16,64,64,8,4,8
%N A064137 Number of divisors of 12^n + 1 that are relatively prime to 12^m + 1 for all 0 < m < n.
%H A064137 Sam Wagstaff, Cunningham Project, <a href="https://homes.cerias.purdue.edu/~ssw/cun/">Factorizations of 12^n+1, n<=240</a>
%t A064137 a = {1}; Do[ d = Divisors[ 12^n + 1 ]; l = Length[ d ]; c = 0; k = 1; While[ k < l + 1, If[ Union[ GCD[ a, d[ [ k ] ] ] ] == {1}, c++ ]; k++ ]; Print[ c ]; a = Union[ Flatten[ Append[ a, Transpose[ FactorInteger[ 12^n + 1 ] ][ [ 1 ] ] ] ] ], {n, 0, 48} ]
%o A064137 (PARI) a(n) = if (n==0, 2, sumdiv(12^n+1, d, vecsum(vector(n-1, k, gcd(d, 12^k+1) == 1)) == n-1)); \\ _Michel Marcus_, Jun 24 2018
%Y A064137 Cf. A064131, A064132, A064133, A064134, A064135, A064136.
%K A064137 nonn
%O A064137 0,1
%A A064137 _Robert G. Wilson v_, Sep 10 2001
%E A064137 More terms from _Michel Marcus_, Jul 02 2018