This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A064146 #25 Dec 14 2024 14:42:41 %S A064146 0,0,0,0,0,2,0,0,3,5,0,2,2,2,3,3,0,2,0,2,2,2,0,2,7,7,10,10,5,5,3,3,3, %T A064146 5,5,7,7,7,3,5,2,2,2,2,10,10,8,10,12,12,12,12,9,9,2,2,2,2,2,2,2,2,10, %U A064146 10,7,9,7,9,5,5,0,2,2,2,7,7,14,14,7,9,12,12,5,5,10,10,10,10,5,5,12,12,12 %N A064146 Sum of non-unitary prime divisors of binomial(n,floor(n/2)). %H A064146 Alois P. Heinz, <a href="/A064146/b064146.txt">Table of n, a(n) for n = 1..7500</a> (first 1000 terms from Harry J. Smith) %F A064146 a(n) = A063958(A001405(n)). %p A064146 a:= n-> add(`if`(i[2]>1, i[1], 0), i=ifactors(binomial(n, iquo(n,2)))[2]): %p A064146 seq(a(n), n=1..100); # _Alois P. Heinz_, Jun 24 2018 %t A064146 a[n_] := Sum[If[i[[2]] > 1, i[[1]], 0], {i, FactorInteger[ Binomial[n, Quotient[n, 2]]]}]; %t A064146 Table[a[n], {n, 1, 100}] (* _Jean-François Alcover_, Mar 02 2022, after _Alois P. Heinz_ *) %o A064146 (PARI) a(n) = { my(f=factor(binomial(n, n\2))); sum(i=1, #f~, if (f[i, 2]>1, f[i,1])) } \\ _Harry J. Smith_, Sep 09 2009 %Y A064146 Cf. A008472, A001405, A063958, A034444, A056169, A046098, A048243. %K A064146 nonn %O A064146 1,6 %A A064146 _Labos Elemer_, Sep 11 2001