This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A064150 #38 Jan 05 2025 19:51:36 %S A064150 1,2,3,4,6,8,9,10,12,15,16,18,20,21,24,25,27,28,30,32,33,35,36,39,40, %T A064150 45,48,54,56,57,60,63,64,65,72,75,77,78,80,81,82,84,87,88,90,92,93,95, %U A064150 96,99,100,105,108,111,112,115,117,120,132,133,135,136,144,145,150,152 %N A064150 Numbers divisible by the sum of their ternary digits. %C A064150 a(n) mod A053735(a(n)) = 0. - _Reinhard Zumkeller_, Nov 25 2009 %H A064150 Reinhard Zumkeller, <a href="/A064150/b064150.txt">Table of n, a(n) for n = 1..10000</a> (first 1000 terms from Harry J. Smith). %H A064150 Paul Dahlenberg and Tom Edgar, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Abstracts/56-2/dalenberg.pdf">Consecutive factorial base Niven numbers</a>, Fibonacci Quarterly, Vol. 56, No. 2 (2018), pp. 163-166. %t A064150 Select[Range[200], IntegerQ[#/(Plus@@IntegerDigits[#, 3])] &] (* _Alonso del Arte_, May 27 2011 *) %o A064150 (PARI) isok(m)={m % sumdigits(m, 3) == 0} \\ _Harry J. Smith_, Sep 09 2009 %o A064150 (Haskell) %o A064150 a064150 n = a064150_list !! (n-1) %o A064150 a064150_list = filter (\x -> x `mod` a053735 x == 0) [1..] %o A064150 -- _Reinhard Zumkeller_, Oct 28 2012 %o A064150 (Python) %o A064150 import numpy as np %o A064150 def gen(): %o A064150 for dec_num in range(1,153): %o A064150 tern_num = np.base_repr(dec_num, 3) %o A064150 sum_tern_digits = 0 %o A064150 for i in tern_num: %o A064150 sum_tern_digits += int(i) %o A064150 if dec_num % sum_tern_digits == 0: %o A064150 yield dec_num %o A064150 print(list((gen()))) # _Adrienne Leonardo_, Dec 28 2024 %Y A064150 Cf. A005349 (Decimal), A049445 (Binary). %K A064150 base,easy,nonn,nice %O A064150 1,2 %A A064150 _Len Smiley_, Sep 11 2001 %E A064150 Corrected and extended by _Vladeta Jovovic_, Sep 22 2001 %E A064150 Offset corrected by _Reinhard Zumkeller_, Oct 28 2012