cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064168 Sum of numerator and denominator in n-th harmonic number, 1 + 1/2 + 1/3 +...+ 1/n.

This page as a plain text file.
%I A064168 #24 Sep 07 2019 07:04:29
%S A064168 2,5,17,37,197,69,503,1041,9649,9901,111431,113741,1506353,1532093,
%T A064168 1556117,3157279,54394463,18358381,352893319,71354639,24031221,
%U A064168 24266365,563299563,1704771547,42976237267,43319457067,392849685203,395718022103,11556136074187
%N A064168 Sum of numerator and denominator in n-th harmonic number, 1 + 1/2 + 1/3 +...+ 1/n.
%C A064168 Numerator and denominator in definition have no common factors >1.
%H A064168 Brian Hayes, <a href="http://bit-player.org/2017/a-tantonalizing-problem">A Tantonalizing Problem</a>
%e A064168 The 3rd harmonic number is 11/6. So a(3) = 11 + 6 = 17.
%p A064168 h:= n-> numer(sum(1/k,k=1..n))+denom(sum(1/k,k=1..n)): seq(h(n),n=1..30);  # _Emeric Deutsch_, Nov 18 2004
%t A064168 Numerator[#]+Denominator[#]&/@HarmonicNumber[Range[30]] (* _Harvey P. Dale_, Jul 04 2017 *)
%o A064168 (PARI) a(n) = my(h=sum(k=1, n, 1/k)); numerator(h) + denominator(h); \\ _Michel Marcus_, Sep 07 2019
%Y A064168 Cf. A001008, A002805, A064167, A064169.
%K A064168 nonn,easy
%O A064168 1,1
%A A064168 _Leroy Quet_, Sep 19 2001
%E A064168 More terms from _Emeric Deutsch_, Nov 18 2004