A064191 Triangle T(n,k) (n >= 0, 0 <= k <= n) generalizing Motzkin numbers.
1, 1, 1, 2, 1, 1, 4, 2, 2, 1, 9, 4, 5, 2, 1, 21, 9, 12, 5, 3, 1, 51, 21, 30, 12, 9, 3, 1, 127, 51, 76, 30, 25, 9, 4, 1, 323, 127, 196, 76, 69, 25, 14, 4, 1, 835, 323, 512, 196, 189, 69, 44, 14, 5, 1, 2188, 835, 1353, 512, 518, 189, 133, 44, 20, 5, 1, 5798, 2188, 3610, 1353
Offset: 0
Examples
Triangle begins 1; 1, 1; 2, 1, 1; 4, 2, 2, 1; ...
Links
- J. L. Arregui, Tangent and Bernoulli numbers related to Motzkin and Catalan numbers by means of numerical triangles.
Crossrefs
First column gives A001006.
Formula
T(n, 0) = Sum_{k=0..n-1} T(n-1, k). For k even, 0 < k <= n, T(n, k) = Sum_{j=k-1..n-1} T(n-1, j). For k odd, 0 < k <= n, T(n, k) = T(n-1, k-1). - David Wasserman, Jul 15 2002
Extensions
More terms from David Wasserman, Jul 15 2002
Comments