This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A064272 #18 Feb 05 2017 13:16:17 %S A064272 0,1,1,0,2,1,1,1,0,2,2,0,2,1,1,1,2,1,2,2,1,2,1,0,1,3,2,1,2,0,3,2,0,2, %T A064272 1,0,4,2,1,2,2,1,2,2,1,3,2,1,1,2,2,2,3,1,3,2,0,2,2,0,4,2,0,2,3,2,4,2, %U A064272 1,2,3,1,1,3,1,4,2,1,3,1,1,5,3,0,3,3,2,2,2,0,4,2,1,3,2,1,4,1,1,2,3,2,3,4,1 %N A064272 Number of representations of n as the sum of a prime number and a nonzero square. %C A064272 a(A064233(n))=0. %C A064272 A002471(n) - 1 <= a(n) <= A002471(n). [_Reinhard Zumkeller_, Sep 30 2011] %C A064272 A224076(n) <= a(A214583(n)+1) for n such that A214583 is defined; a(A064283(n)) = n and a(m) <> n for m < A064283(n). - _Reinhard Zumkeller_, Mar 31 2013 %H A064272 Reinhard Zumkeller, <a href="/A064272/b064272.txt">Table of n, a(n) for n = 2..10000</a> %F A064272 a(n) = SUM(A010051(k)*A010052(n-k+1): 1<=k<=n). [From _Reinhard Zumkeller_, Nov 05 2009] %F A064272 G.f.: (Sum_{k>=1} x^prime(k))*(Sum_{k>=1} x^(k^2)). - _Ilya Gutkovskiy_, Feb 05 2017 %e A064272 6=2+4=5+1, thus a(6)=2. %o A064272 (Haskell) %o A064272 a064272 n = sum $ %o A064272 map (a010051 . (n -)) $ takeWhile (< n) $ tail a000290_list %o A064272 -- _Reinhard Zumkeller_, Jul 23 2013, Sep 30 2011 %Y A064272 Cf. A064233. %Y A064272 Cf. A000290. %K A064272 nonn %O A064272 2,5 %A A064272 _Vladeta Jovovic_, Sep 23 2001