cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064298 Square array read by antidiagonals of self-avoiding rook paths joining opposite corners of n X k board.

This page as a plain text file.
%I A064298 #28 Apr 11 2021 06:39:58
%S A064298 1,1,1,1,2,1,1,4,4,1,1,8,12,8,1,1,16,38,38,16,1,1,32,125,184,125,32,1,
%T A064298 1,64,414,976,976,414,64,1,1,128,1369,5382,8512,5382,1369,128,1,1,256,
%U A064298 4522,29739,79384,79384,29739,4522,256,1,1,512,14934,163496,752061,1262816,752061,163496,14934,512,1
%N A064298 Square array read by antidiagonals of self-avoiding rook paths joining opposite corners of n X k board.
%D A064298 S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 331-339.
%H A064298 Andrew Howroyd, <a href="/A064298/b064298.txt">Table of n, a(n) for n = 1..378</a>
%H A064298 Steven R. Finch, <a href="/FinchGammel.html">Self-Avoiding Walks of a Rook on a Chessboard</a> [From Steven Finch, Apr 20 2019]
%H A064298 Steven R. Finch, <a href="/FinchFlajolet.html">Self-Avoiding Walks of a Rook</a> [From Steven Finch, Apr 20 2019; mentioned in Finch's "Gammel" link above]
%H A064298 Steven R. Finch, <a href="/FinchMarxen.html">Table of Non-Overlapping Rook Paths</a> [From Steven Finch, Apr 20 2019; mentioned in Finch's "Gammel" link above]
%e A064298 The start of the sequence as table:
%e A064298 * 1  1    1     1      1        1         1 ...
%e A064298 * 1  2    4     8     16       32        64 ...
%e A064298 * 1  4   12    38    125      414      1369 ...
%e A064298 * 1  8   38   184    976     5382     29739 ...
%e A064298 * 1 16  125   976   8512    79384    752061 ...
%e A064298 * 1 32  414  5382  79384  1262816  20562673 ...
%e A064298 * 1 64 1369 29739 752061 20562673 575780564 ...
%o A064298 (Python)
%o A064298 # Using graphillion
%o A064298 from graphillion import GraphSet
%o A064298 import graphillion.tutorial as tl
%o A064298 def A064298(n, k):
%o A064298     if n == 1 or k == 1: return 1
%o A064298     universe = tl.grid(n - 1, k - 1)
%o A064298     GraphSet.set_universe(universe)
%o A064298     start, goal = 1, k * n
%o A064298     paths = GraphSet.paths(start, goal)
%o A064298     return paths.len()
%o A064298 print([A064298(j + 1, i - j + 1) for i in range(11) for j in range(i + 1)])  # _Seiichi Manyama_, Apr 06 2020
%Y A064298 A064297 together with its transpose.
%Y A064298 Rows and columns include A000012, A000079, A006192, A007786, A007787, A145403, A333812.
%Y A064298 Main diagonal is A007764.
%Y A064298 Cf. A271465.
%K A064298 nonn,tabl,walk
%O A064298 1,5
%A A064298 _Henry Bottomley_, Sep 05 2001