cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064306 Convolution of A052701 (Catalan numbers multiplied by powers of 2) with powers of -1.

This page as a plain text file.
%I A064306 #22 Jan 05 2025 19:51:36
%S A064306 1,1,7,33,191,1153,7295,47617,318463,2170881,15028223,105365505,
%T A064306 746651647,5339185153,38478839807,279201841153,2037998419967,
%U A064306 14954803494913,110255315877887,816299567480833,6066679566041087
%N A064306 Convolution of A052701 (Catalan numbers multiplied by powers of 2) with powers of -1.
%H A064306 G. C. Greubel, <a href="/A064306/b064306.txt">Table of n, a(n) for n = 0..1000</a>
%H A064306 W. Lang, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/40-4/lang.pdf">On polynomials related to derivatives of the generating function of Catalan numbers</a>, Fib. Quart. 40,4 (2002) 299-313; Eq.(31) with lambda=-1/2.
%F A064306 a(n) = (-1)^n*Sum_{k=0,..,n} (C(k)/(-1/2)^k) with C(k)=A000108(k) (Catalan).
%F A064306 a(n) = -a(n-1) + C(n)*2^n, n >= 0, a(-1) := 0, with C(n)=A000108(n).
%F A064306 G.f.: A(2*x)/(1+x), with A(x) g.f. of Catalan numbers A000108.
%F A064306 Recurrence: (n+1)*a(n) = (7*n-5)*a(n-1) + 4*(2*n-1)*a(n-2). - _Vaclav Kotesovec_, Dec 09 2013
%F A064306 a(n) ~ 2^(3*n+3)/(9*sqrt(Pi)*n^(3/2)). - _Vaclav Kotesovec_, Dec 09 2013
%t A064306 CoefficientList[Series[(1-Sqrt[1-8*x])/(4*x*(1+x)), {x, 0, 20}], x] (* _Vaclav Kotesovec_, Dec 09 2013 *)
%t A064306 Table[FullSimplify[2^(n+1)*(2*n+2)! * Hypergeometric2F1Regularized[1, n+3/2, n+3, -8]/(n+1)! + (-1)^n/2],{n,0,20}] (* _Vaclav Kotesovec_, Dec 09 2013 *)
%t A064306 Table[(-1)^n*Sum[(-2)^k * CatalanNumber[k], {k,0,n}], {n,0,50}] (* _G. C. Greubel_, Jan 27 2017 *)
%o A064306 (Sage)
%o A064306 def A064306():
%o A064306     f, c, n = 1, 1, 1
%o A064306     while True:
%o A064306         yield f
%o A064306         n += 1
%o A064306         c = c * (8*n - 12) // n
%o A064306         f = c - f
%o A064306 a = A064306()
%o A064306 print([next(a) for _ in range(21)]) # _Peter Luschny_, Nov 30 2016
%o A064306 (PARI) for(n=0, 25, print1((-1)^n*sum(k=0,n, (-2)^k*binomial(2*k,k)/(k+1)), ", ")) \\ _G. C. Greubel_, Jan 27 2017
%K A064306 nonn,easy
%O A064306 0,3
%A A064306 _Wolfdieter Lang_, Sep 13 2001