This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A064306 #22 Jan 05 2025 19:51:36 %S A064306 1,1,7,33,191,1153,7295,47617,318463,2170881,15028223,105365505, %T A064306 746651647,5339185153,38478839807,279201841153,2037998419967, %U A064306 14954803494913,110255315877887,816299567480833,6066679566041087 %N A064306 Convolution of A052701 (Catalan numbers multiplied by powers of 2) with powers of -1. %H A064306 G. C. Greubel, <a href="/A064306/b064306.txt">Table of n, a(n) for n = 0..1000</a> %H A064306 W. Lang, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/40-4/lang.pdf">On polynomials related to derivatives of the generating function of Catalan numbers</a>, Fib. Quart. 40,4 (2002) 299-313; Eq.(31) with lambda=-1/2. %F A064306 a(n) = (-1)^n*Sum_{k=0,..,n} (C(k)/(-1/2)^k) with C(k)=A000108(k) (Catalan). %F A064306 a(n) = -a(n-1) + C(n)*2^n, n >= 0, a(-1) := 0, with C(n)=A000108(n). %F A064306 G.f.: A(2*x)/(1+x), with A(x) g.f. of Catalan numbers A000108. %F A064306 Recurrence: (n+1)*a(n) = (7*n-5)*a(n-1) + 4*(2*n-1)*a(n-2). - _Vaclav Kotesovec_, Dec 09 2013 %F A064306 a(n) ~ 2^(3*n+3)/(9*sqrt(Pi)*n^(3/2)). - _Vaclav Kotesovec_, Dec 09 2013 %t A064306 CoefficientList[Series[(1-Sqrt[1-8*x])/(4*x*(1+x)), {x, 0, 20}], x] (* _Vaclav Kotesovec_, Dec 09 2013 *) %t A064306 Table[FullSimplify[2^(n+1)*(2*n+2)! * Hypergeometric2F1Regularized[1, n+3/2, n+3, -8]/(n+1)! + (-1)^n/2],{n,0,20}] (* _Vaclav Kotesovec_, Dec 09 2013 *) %t A064306 Table[(-1)^n*Sum[(-2)^k * CatalanNumber[k], {k,0,n}], {n,0,50}] (* _G. C. Greubel_, Jan 27 2017 *) %o A064306 (Sage) %o A064306 def A064306(): %o A064306 f, c, n = 1, 1, 1 %o A064306 while True: %o A064306 yield f %o A064306 n += 1 %o A064306 c = c * (8*n - 12) // n %o A064306 f = c - f %o A064306 a = A064306() %o A064306 print([next(a) for _ in range(21)]) # _Peter Luschny_, Nov 30 2016 %o A064306 (PARI) for(n=0, 25, print1((-1)^n*sum(k=0,n, (-2)^k*binomial(2*k,k)/(k+1)), ", ")) \\ _G. C. Greubel_, Jan 27 2017 %K A064306 nonn,easy %O A064306 0,3 %A A064306 _Wolfdieter Lang_, Sep 13 2001