A064307 Triangle of coefficients of certain numerator polynomials N(n,x).
1, 1, 0, 1, 2, 1, 1, 10, 17, 2, 1, 37, 181, 111, 6, 1, 126, 1530, 2624, 741, 18, 1, 422, 11607, 43940, 34063, 4950, 57, 1, 1422, 83823, 616894, 1013799, 412698, 33337, 186, 1, 4853, 593203, 7846573, 23794925
Offset: 1
Examples
Triangle begins: 1; 1, 0; 1, 2, 1; N(3,x) = 1+2*x+x^2 = (1+x)^2. 1, 10, 17, 2; 1, 37, 181, 111, 6; ...
Formula
a(n, m) = [x^m]N(n, x); N(n, x) = (1-x)^(n-1) + Sum_{k=1..n-1} A064308(n-1, k)*k!*x^k*(1-x)^(n-1-k) for n >= 2; N(1, x) = 1 = N(2, x).
Comments