cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064312 a(n) = B(n)*P(n), where B(n) are Bell numbers (A000110) and P(n) are numbers of arrangements of a set of n elements (A000522).

This page as a plain text file.
%I A064312 #11 Sep 09 2017 23:09:13
%S A064312 1,2,10,80,975,16952,397271,12014900,453748140,20859612270,
%T A064312 1143989113475,73628313849840,5486361777107965,467931786713485382,
%U A064312 45238398292112762210,4915902436799253089420,596048018991814531136899
%N A064312 a(n) = B(n)*P(n), where B(n) are Bell numbers (A000110) and P(n) are numbers of arrangements of a set of n elements (A000522).
%F A064312 Integral representation as n-th moment of a positive function on a positive half-axis, in Maple notation: a(n)= int(x^n*sum(exp(-x/k)*Heaviside(x-k)/(k*k!), k=1..infinity), x=0..infinity).
%F A064312 E.g.f.: A(x) = Sum_{n>=0} exp(n*x-1)/(n!*(1-n*x)). - _Vladeta Jovovic_, Feb 04 2008
%p A064312 a:=n->sum(bell(n)*n!/j!,j=0..n):seq(a(n),n=0..16); # _Zerinvary Lajos_, Mar 19 2007
%Y A064312 Cf. A000110, A000522.
%K A064312 nonn
%O A064312 0,2
%A A064312 _Karol A. Penson_, Sep 07 2001