cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064315 Triangle of number of permutations by length of shortest ascending run.

This page as a plain text file.
%I A064315 #49 Apr 22 2022 09:02:12
%S A064315 1,1,1,5,0,1,18,5,0,1,101,18,0,0,1,611,89,19,0,0,1,4452,519,68,0,0,0,
%T A064315 1,36287,3853,110,69,0,0,0,1,333395,27555,1679,250,0,0,0,0,1,3382758,
%U A064315 233431,11941,418,251,0,0,0,0,1,37688597,2167152,59470,658,922,0,0,0,0,0,1
%N A064315 Triangle of number of permutations by length of shortest ascending run.
%H A064315 Alois P. Heinz, <a href="/A064315/b064315.txt">Rows n = 1..100, flattened</a>
%H A064315 D. W. Wilson, <a href="/A008304/a008304.txt">Extended tables for A008304 and A064315</a>
%F A064315 T(2*n,n) = binomial(2*n,n)-1 = A030662(n).
%F A064315 Sum_{k=1..n} k * T(n,k) = A064316(n).
%e A064315 Sequence (1, 3, 2, 5, 4) has ascending runs (1, 3), (2, 5), (4), the shortest is length 1. Of all permutations of (1, 2, 3, 4, 5), T(5,1) = 101 have shortest ascending run of length 1.
%e A064315 Triangle T(n,k) begins:
%e A064315       1;
%e A064315       1,    1;
%e A064315       5,    0,   1;
%e A064315      18,    5,   0,  1;
%e A064315     101,   18,   0,  0,  1;
%e A064315     611,   89,  19,  0,  0, 1;
%e A064315    4452,  519,  68,  0,  0, 0, 1,
%e A064315   36287, 3853, 110, 69,  0, 0, 0, 1;
%e A064315   ...
%p A064315 A:= proc(n, k) option remember; local b; b:=
%p A064315       proc(u, o, t) option remember; `if`(t+o<=k, (u+o)!,
%p A064315         add(b(u+i-1, o-i, min(k, t)+1), i=1..o)+
%p A064315         `if`(t<=k, u*(u+o-1)!, add(b(u-i, o+i-1, 1), i=1..u)))
%p A064315       end: forget(b):
%p A064315       add(b(j-1, n-j, 1), j=1..n)
%p A064315     end:
%p A064315 T:= (n, k)-> A(n, k) -A(n, k-1):
%p A064315 seq(seq(T(n, k), k=1..n), n=1..12); # _Alois P. Heinz_, Aug 29 2013
%t A064315 A[n_, k_] := A[n, k] = Module[{b}, b[u_, o_, t_] := b[u, o, t] = If[t+o <= k, (u+o)!, Sum[b[u+i-1, o-i, Min[k, t]+1], {i, 1, o}] + If[t <= k, u*(u+o-1)!, Sum[ b[u-i, o+i-1, 1], {i, 1, u}]]]; Sum[b[j-1, n-j, 1], {j, 1, n}]]; T[n_, k_] := A[n, k] - A[n, k-1]; Table[Table[T[n, k], {k, 1, n}], {n, 1, 12}] // Flatten (* _Jean-François Alcover_, Jan 28 2015, after _Alois P. Heinz_ *)
%Y A064315 Row sums give: A000142.
%Y A064315 Columns k=1-10 give: A228614, A185652, A228670, A228671, A228672, A228673, A228674, A228675, A228676, A228677.
%Y A064315 Cf. A030662, A064316.
%K A064315 nonn,tabl
%O A064315 1,4
%A A064315 _David W. Wilson_, Sep 07 2001