This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A064325 #19 Sep 08 2022 08:45:04 %S A064325 1,1,-2,13,-98,826,-7448,70309,-686090,6865150,-70057772,726325810, %T A064325 -7628741204,81002393668,-868066319108,9376806129493,-101988620430938, %U A064325 1116026661667318,-12277755319108748,135715825209716038,-1506587474535945788,16789107646422189868,-187747069029477151328 %N A064325 Generalized Catalan numbers C(-3; n). %C A064325 See triangle A064334 with columns m built from C(-m; n), m >= 0, also for Derrida et al. references. %H A064325 G. C. Greubel, <a href="/A064325/b064325.txt">Table of n, a(n) for n = 0..850</a> %F A064325 a(n) = Sum_{m=0..n-1} (n-m)*binomial(n-1+m, m)*(-3)^m/n. %F A064325 a(n) = (1/4)^n*(1 + 3*Sum_{k=0..n-1} C(k)*(-3*4)^k), n >= 1, a(0) = 1; with C(n) = A000108(n) (Catalan). %F A064325 G.f.: (1+3*x*c(-3*x)/4)/(1-x/4) = 1/(1-x*c(-3*x)) with c(x) g.f. of Catalan numbers A000108. %F A064325 a(n) = hypergeometric([1-n, n], [-n], -3) for n>0. - _Peter Luschny_, Nov 30 2014 %t A064325 a[0] = 1; %t A064325 a[n_] := Sum[(n-m) Binomial[n+m-1, m] (-3)^m/n, {m, 0, n-1}]; %t A064325 Table[a[n], {n, 0, 22}] (* _Jean-François Alcover_, Jul 30 2018 *) %t A064325 CoefficientList[Series[(7 +Sqrt[1+12*x])/(2*(4-x)), {x, 0, 30}], x] (* _G. C. Greubel_, May 03 2019 *) %o A064325 (Sage) %o A064325 def a(n): %o A064325 if n == 0: return 1 %o A064325 return hypergeometric([1-n, n], [-n], -3).simplify() %o A064325 [a(n) for n in range(24)] # _Peter Luschny_, Nov 30 2014 %o A064325 (Sage) ((7 +sqrt(1+12*x))/(2*(4-x))).series(x, 30).coefficients(x, sparse=False) # _G. C. Greubel_, May 03 2019 %o A064325 (PARI) a(n) = if (n==0, 1, sum(m=0, n-1, (n-m)*binomial(n-1+m, m)*(-3)^m/n)); \\ _Michel Marcus_, Jul 30 2018 %o A064325 (PARI) my(x='x+O('x^30)); Vec((7 +sqrt(1+12*x))/(2*(4-x))) \\ _G. C. Greubel_, May 03 2019 %o A064325 (Magma) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (7 +Sqrt(1+12*x))/(2*(4-x)) )); // _G. C. Greubel_, May 03 2019 %Y A064325 Cf. A064334, A000108. %K A064325 sign,easy %O A064325 0,3 %A A064325 _Wolfdieter Lang_, Sep 21 2001