This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A064326 #15 Sep 08 2022 08:45:04 %S A064326 1,1,-3,25,-251,2817,-33843,425769,-5537835,73865617,-1004862179, %T A064326 13888533561,-194475377243,2752994728225,-39333541106835, %U A064326 566464908534345,-8214515461250955,119845125957958065,-1757855400878129475,25906894146115000665,-383443906519878272955 %N A064326 Generalized Catalan numbers C(-4; n). %C A064326 See triangle A064334 with columns m built from C(-m; n), m >= 0, also for Derrida et al. references. %H A064326 G. C. Greubel, <a href="/A064326/b064326.txt">Table of n, a(n) for n = 0..830</a> %F A064326 a(n) = Sum_{m=0..n-1} (n-m)*binomial(n-1+m, m)*(-4)^m/n. %F A064326 a(n) = (1/5)^n*(1 + 4*Sum_{k=0..n-1} C(k)*(-4*5)^k), n >= 1, a(0) = 1; with C(n) = A000108(n) (Catalan). %F A064326 G.f.: (1+4*x*c(-4*x)/5)/(1-x/5) = 1/(1-x*c(-4*x)) with c(x) g.f. of Catalan numbers A000108. %F A064326 a(n) = hypergeometric([1-n, n], [-n], -4) for n > 0. - _Peter Luschny_, Nov 30 2014 %t A064326 CoefficientList[Series[(9 +Sqrt[1+16*x])/(2*(5-x)), {x, 0, 30}], x] (* _G. C. Greubel_, May 03 2019 *) %o A064326 (Sage) %o A064326 def a(n): %o A064326 if n==0: return 1 %o A064326 return hypergeometric([1-n, n], [-n], -4).simplify() %o A064326 [a(n) for n in range(20)] # _Peter Luschny_, Nov 30 2014 %o A064326 (Sage) ((9 +sqrt(1+16*x))/(2*(5-x))).series(x, 30).coefficients(x, sparse=False) # _G. C. Greubel_, May 03 2019 %o A064326 (PARI) my(x='x+O('x^30)); Vec((9 +sqrt(1+16*x))/(2*(5-x))) \\ _G. C. Greubel_, May 03 2019 %o A064326 (Magma) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (9 +Sqrt(1+16*x))/(2*(5-x)) )); // _G. C. Greubel_, May 03 2019 %Y A064326 Cf. A064334. %K A064326 sign,easy %O A064326 0,3 %A A064326 _Wolfdieter Lang_, Sep 21 2001