This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A064328 #13 Sep 08 2022 08:45:04 %S A064328 1,1,-5,61,-917,15421,-277733,5239117,-102188021,2044131037, %T A064328 -41706059525,864547613293,-18157111255829,385517710342909, %U A064328 -8261602828082213,178459989617336461,-3881680470161846837 %N A064328 Generalized Catalan numbers C(-6; n). %C A064328 See triangle A064334 with columns m built from C(-m; n), m >= 0, also for Derrida et al. references. %H A064328 G. C. Greubel, <a href="/A064328/b064328.txt">Table of n, a(n) for n = 0..720</a> %F A064328 a(n) = Sum_{m=0..n-1} (n-m)*binomial(n-1+m, m)*(-6)^m/n. %F A064328 a(n) = (1/7)^n*(1 + 6*Sum_{k=0..n-1} C(k)*(-6*7)^k), n >= 1, a(0) := 1; with C(n)=A000108(n) (Catalan). %F A064328 G.f.: (1+6*x*c(-6*x)/7)/(1-x/7) = 1/(1-x*c(-6*x)) with c(x) g.f. of Catalan numbers A000108. %t A064328 CoefficientList[Series[(13 +Sqrt[1+24*x])/(2*(7-x)), {x, 0, 30}], x] (* _G. C. Greubel_, May 03 2019 *) %o A064328 (PARI) my(x='x+O('x^30)); Vec((13 +sqrt(1+24*x))/(2*(7-x))) \\ _G. C. Greubel_, May 03 2019 %o A064328 (Magma) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (13 +Sqrt(1+24*x))/(2*(7-x)) )); // _G. C. Greubel_, May 03 2019 %o A064328 (Sage) ((13 +sqrt(1+24*x))/(2*(7-x))).series(x, 30).coefficients(x, sparse=False) # _G. C. Greubel_, May 03 2019 %K A064328 sign,easy %O A064328 0,3 %A A064328 _Wolfdieter Lang_, Sep 21 2001