This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A064343 #10 Jun 11 2024 00:10:56 %S A064343 1,1,10,325,16750,1056250,74237500,5580578125,439118593750, %T A064343 35714849218750,2978473867187500,253316015488281250, %U A064343 21887247402929687500,1915840314586914062500,169529844641289062500000 %N A064343 Generalized Catalan numbers C(5,5; n). %C A064343 See triangle A064879 with columns m built from C(m,m; n), m >= 0, also for Derrida et al. and Liggett references. %H A064343 J. Abate, W. Whitt, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL14/Whitt/whitt6.html">Brownian Motion and the Generalized Catalan Numbers</a>, J. Int. Seq. 14 (2011) # 11.2.6, corollary 6. %F A064343 a(n) = ((25^(n-1))/(n-1))*Sum_{m=0..n-2} (m+1)*(m+2)*binomial(2*(n-2)-m, n-2-m)*((1/5)^(m+1)), n >= 2, a(0) := 1 =: a(1). %F A064343 G.f.: (1-9*x*c(25*x))/(1-5*x*c(25*x))^2 = c(25*x)*(9+16*c(25*x))/(1+4*c(25*x))^2 = (9*c(25*x)*(5*x)^2+8*(2+7*x))/(4+5*x)^2 with c(x)= A(x) g.f. of Catalan numbers A000108. %F A064343 4*(-n+1)*a(n) +5*(79*n-200)*a(n-1) +250*(2*n-3)*a(n-2)=0. - _R. J. Mathar_, Aug 09 2017 %Y A064343 Cf. A000108, A064342. %K A064343 nonn,easy %O A064343 0,3 %A A064343 _Wolfdieter Lang_, Oct 12 2001