cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064364 Positive integers sorted by A001414(n), the sum of their prime divisors, as the major key and n as the minor key.

This page as a plain text file.
%I A064364 #52 Nov 03 2023 16:07:58
%S A064364 1,2,3,4,5,6,8,9,7,10,12,15,16,18,14,20,24,27,21,25,30,32,36,11,28,40,
%T A064364 45,48,54,35,42,50,60,64,72,81,13,22,56,63,75,80,90,96,108,33,49,70,
%U A064364 84,100,120,128,135,144,162,26,44,105,112,125,126,150,160,180,192,216,243
%N A064364 Positive integers sorted by A001414(n), the sum of their prime divisors, as the major key and n as the minor key.
%C A064364 This is a permutation of the positive integers.
%C A064364 a(1) could be taken as 0 because 1 is not a member of A001414 and one could start with a(0)=1 (see the W. Lang link).
%C A064364 The row length sequence of this array is A000607(n), n>=2.
%C A064364 If the array is [1,0,2,3,4,5,6,6,...] with offset 0 then the row length sequence is A000607(n), n>=0.
%C A064364 From _David James Sycamore_, May 11 2018: (Start)
%C A064364 For n > 1, a(n) is the smallest number not yet seen such that sopfr(a(n)) is the least possible integer. The sequence lists in increasing order elements of the finite sets S(k) = {x: sopfr(x)=k}, k >= 0, where sopfr(x) = 0 iff x = 1. When a(n) = A056240(k) for some k >= 2, then sopfr(a(n)) = k and a(n) is the first of A000607(k) terms, all of which have sopfr = k. (A000607(k) is the number of partitions of k into prime parts.) Consequently the sequence follows a sawtooth profile, rising from a(n) = A056240(k) to A000792(k), the greatest number with sopfr = k, then starting over with A056240(k+1) for the next larger value of sopfr. (End) [Edited by _M. F. Hasler_, Jan 19 2019]
%H A064364 Alois P. Heinz, <a href="/A064364/b064364.txt">Rows n = 1..60, flattened</a> (first 32 rows from Reinhard Zumkeller)
%H A064364 H. Havermann: <a href="http://chesswanks.com/seq/sopfr/000.txt">The first 100 sums (complete, a 6 MB file)</a>
%H A064364 H. Havermann: <a href="http://chesswanks.com/seq/sopfr/">Tables of sum-of-prime-factors sequences (overview with links to the first 50000 sums)</a>
%H A064364 Wolfdieter Lang, <a href="/A064364/a064364.txt">First 16 rows.</a>
%H A064364 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>
%F A064364 If a(n) = A056240(k) for some k then a(n+A000607(k)-1) = A000792(k). - _David James Sycamore_, May 11 2018
%e A064364 The triangle reads:
%e A064364 1,
%e A064364 (0,) (see comment in link to "first 16 rows" by W. Lang)
%e A064364 2,
%e A064364 3,
%e A064364 4,
%e A064364 5,  6,
%e A064364 8,  9,
%e A064364 7,  10, 12,
%e A064364 15, 16, 18,
%e A064364 14, 20, 24, 27,
%e A064364 21, 25, 30, 32, 36,
%e A064364 11, 28, 40, 45, 48, 54,
%e A064364 35, 42, 50, 60, 64, 72, 81,
%e A064364 13, 22, 56, 63, 75, 80, 90, 96, 108,
%e A064364 ...
%t A064364 terms = 1000; nmax0 = 100000 (* a rough estimate of max sopfr *);
%t A064364 sopfr[n_] := sopfr[n] = Total[Times @@@ FactorInteger[n]];
%t A064364 f[n1_, n2_] := Which[t1 = sopfr[n1]; t2 = sopfr[n2]; t1 < t2, True, t1 == t2, n1 <= n2, True, False];
%t A064364 Clear[g];
%t A064364 g[nmax_] := g[nmax] = Sort[Range[nmax], f][[1 ;; terms]];
%t A064364 g[nmax = nmax0];
%t A064364 g[nmax += nmax0];
%t A064364 While[g[nmax] != g[nmax - nmax0], Print[nmax]; nmax += nmax0];
%t A064364 A064364 = g[nmax] (* _Jean-François Alcover_, Mar 13 2019 *)
%o A064364 (Haskell)
%o A064364 import Data.List (partition, union)
%o A064364 a064364 n k = a064364_tabf !! (n-1) !! (k-1)
%o A064364 a064364_row n = a064364_tabf !! (n-1)
%o A064364 a064364_tabf = [1] : tail (f 1 [] 1 (map a000792 [2..])) where
%o A064364    f k pqs v (w:ws) = (map snd pqs') :
%o A064364      f (k + 1) (union pqs'' (zip (map a001414 us) us )) w ws where
%o A064364        us = [v + 1 .. w]
%o A064364        (pqs', pqs'') = partition ((== k) . fst) pqs
%o A064364 a064364_list = concat a064364_tabf
%o A064364 -- _Reinhard Zumkeller_, Jun 11 2015
%o A064364 (PARI) lista(nn) = {nmax = A000792(nn); v = vector(nmax, k, A001414(k)); for (n=1, nn, vn = select(x->x==n, v, 1); for (k = 1, #vn, print1(vn[k], ", ")))} \\ _Michel Marcus_, May 01 2018
%o A064364 (PARI) A064364_vec(N, k=6, L=9)={vector(N, i, if(i<7, N=i, until(A001414(N+=1)==k, ); N<L, N, k++; L=3^((k-2)\3)*(2+(k-2)%3); N+0*N=A056240(k)-1))} \\ To compute terms up to a given value of k=sopfr(n) and/or for large N >> 1000, it is more efficient to use code similar to lista() above, with "for(k...)" replaced by "a=concat(a, vn)". - _M. F. Hasler_, Jan 19 2019
%Y A064364 Cf. A001414.
%Y A064364 Cf. A000607 (row lengths), A002098 (row sums), A056240 (least = first term in the n-th row), A000792 (greatest term in the n-th row).
%Y A064364 Cf. A257815 (inverse).
%K A064364 easy,nonn,look,tabf
%O A064364 1,2
%A A064364 _Howard A. Landman_, Sep 25 2001
%E A064364 More terms from _Vladeta Jovovic_, Sep 27 2005