This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A064368 #15 Nov 07 2024 03:49:18 %S A064368 1,4,7,10,15,18,21,24,29,36,39,42,47,50,53,56,65,68,75,78,83,86,89,92, %T A064368 97,108,111,118,123,126,129,132,141,144,147,150,163,166,169,172,177, %U A064368 180,183,186,191,198,201,204,213,228,239,242,247,250,257,260,265,268 %N A064368 Number of 2 X 2 symmetric singular matrices with entries from {0,...,n}. %H A064368 Vaclav Kotesovec, <a href="/A064368/b064368.txt">Table of n, a(n) for n = 0..10000</a> %F A064368 a(n) = n + 1 + 2*Sum_{k=1..n} Sum_{d^2|k} phi(d), where phi = Euler totient function A000010. %F A064368 a(n) ~ (n/zeta(2)) * (log(n) + 3*gamma - 1 + zeta(2) - 2*zeta'(2)/zeta(2)), where gamma is Euler's constant (A001620). - _Amiram Eldar_, Nov 07 2024 %t A064368 f[p_, e_] := p^Floor[e/2]; a[0] = 0; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; With[{max = 100}, 1 + Range[0, max] + 2 * Accumulate[Array[a, max + 1, 0]]] (* _Amiram Eldar_, Nov 07 2024 *) %o A064368 (PARI) a(n) = n + 1 + 2*sum(k=1, n, sumdiv(k, d, issquare(d)*eulerphi(sqrtint(d)))) \\ _Michel Marcus_, Jun 17 2013 %Y A064368 Cf. A000010, A000188, A064276, A059306, A062801, A059976, A039623. %Y A064368 Cf. A001620, A306016. %K A064368 nonn %O A064368 0,2 %A A064368 _Vladeta Jovovic_, Sep 27 2001