cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064379 Irregular triangle whose n-th row is a list of numbers that are infinitarily relatively prime to n (n = 2, 3, ...).

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 4, 5, 1, 2, 3, 4, 5, 6, 1, 3, 5, 7, 1, 2, 3, 4, 5, 6, 7, 8, 1, 3, 4, 7, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 5, 7, 9, 10, 11, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 3, 4, 5, 9, 11, 12, 13, 1, 2, 4, 7, 8, 9, 11, 13, 14, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
Offset: 2

Views

Author

Wouter Meeussen, Sep 27 2001

Keywords

Comments

The integers less than n that have no common infinitary divisors with n.

Examples

			irelprime[6] = {1, 4, 5} because iDivisors[6] = {1, 2, 3, 6} and iDivisors[4] = {1, 4} so 4 is infinitary_relatively_prime to 6 since it lacks common infinitary divisors with 6.
For n = 2 ..8 irelprime[n] gives {1}, {1,2}, {1,2,3}, {1,2,3,4}, {1,4,5}, {1,2,3,4,5,6}, {1,3,5,7}.
Triangle starts:
   2: 1;
   3: 1, 2;
   4: 1, 2, 3;
   5: 1, 2, 3, 4;
   6: 1, 4, 5;
   7: 1, 2, 3, 4, 5, 6;
   8: 1, 3, 5, 7;
   9: 1, 2, 3, 4, 5, 6, 7, 8;
  10: 1, 3, 4, 7, 9;
  11: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10;
  12: 1, 2, 5, 7, 9, 10, 11;
  13: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12;
  14: 1, 3, 4, 5, 9, 11, 12, 13;
  15: 1, 2, 4, 7, 8, 9, 11, 13, 14;
		

Crossrefs

Programs

  • Mathematica
    irelprime[ n_ ] := Select[ temp=iDivisors[ n ]; Range[ n ], Intersection[ iDivisors[ # ], temp ]==={1}& ]; (* with iDivisors of n as *) bitty[ k_ ] := Union[ Flatten[ Outer[ Plus, Sequence@@{0, #1}&/@Union[ 2^Range[ 0, Floor[ Log[ 2, k ] ] ]*Reverse[ IntegerDigits[ k, 2 ] ] ] ] ] ]; iDivisors[ k_Integer ] := Sort[ (Times @@(First[ it ]^(#1/.z-> List))&)/@Flatten[ Outer[ z, Sequence@@bitty/@Last[ it=Transpose[ FactorInteger[ k ] ] ], 1 ] ] ]; iDivisors[ 1 ] := {1};
    infCoprimeQ[n1_, n2_] := Module[{g = GCD[n1, n2]}, If[g == 1, True, AllTrue[ FactorInteger[g][[;; , 1]], BitAnd @@ IntegerExponent[{n1, n2}, #] == 0 &]]]; row[n_] := Select[Range[n - 1], infCoprimeQ[#, n] &]; Table[row[n], {n, 2, 16}] // Flatten (* Amiram Eldar, Mar 26 2023 *)
  • PARI
    isinfcoprime(n1, n2) = {my(g = gcd(n1, n2), p, e1, e2); if(g == 1,return(1)); p = factor(g)[, 1]; for(i=1, #p, e1 = valuation(n1, p[i]); e2 = valuation(n2, p[i]); if(bitand(e1, e2) > 0, return(0))); 1; }
    row(n) = select(x->isinfcoprime(x, n), vector(n-1, i, i)); \\ Amiram Eldar, Mar 26 2023