cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064405 Number of even entries (A048967) minus the number of odd entries (A001316) in row n of Pascal's triangle (A007318).

This page as a plain text file.
%I A064405 #25 Aug 24 2022 12:09:48
%S A064405 -1,-2,-1,-4,1,-2,-1,-8,5,2,3,-4,5,-2,-1,-16,13,10,11,4,13,6,7,-8,17,
%T A064405 10,11,-4,13,-2,-1,-32,29,26,27,20,29,22,23,8,33,26,27,12,29,14,15,
%U A064405 -16,41,34,35,20,37,22,23,-8,41,26,27,-4,29,-2,-1,-64,61,58,59,52,61,54,55,40,65,58,59,44,61,46,47,16,73,66,67,52,69,54
%N A064405 Number of even entries (A048967) minus the number of odd entries (A001316) in row n of Pascal's triangle (A007318).
%H A064405 Seiichi Manyama, <a href="/A064405/b064405.txt">Table of n, a(n) for n = 0..8191</a>
%F A064405 a(n) = Sum_{k=0..n} (-1)^binomial(n, k); a(2^n) = 2^n-3; a(2^n+1)=2^n-6; more generally there's a sequence z(k) such that for any k>=0 and for 2^n >k, a(2^n+k) = 2^n+z(k); for k=0, 1, 2, 3, 4, 5, 6, 7, 8... z(k) = -3, -6, -5, -12, -3, -10, -9, -24, 1, ... - _Benoit Cloitre_, Oct 18 2002
%F A064405 a(2n) = a(n) + n, a(2n+1) = 2a(n). - _Ralf Stephan_, Mar 05 2004
%F A064405 a(n) = -Sum_{k=0..n} moebius(binomial(n, k) mod 2). - _Paul Barry_, Apr 29 2005
%F A064405 a(2^n-1) = -2^n. - _Seiichi Manyama_, Aug 24 2022
%t A064405 Table[ n + 1 - 2Sum[ Mod[ Binomial[ n, k ], 2 ], {k, 0, n} ], {n, 0, 100} ]
%o A064405 (PARI) a(n)=sum(i=0,n,(-1)^binomial(n,i))
%o A064405 (PARI) a(n)=if(n<1,-1,if(n%2==0,a(n/2)+n/2,2*a((n-1)/2)))
%Y A064405 Cf. A000079, A001316, A007318, A048967.
%K A064405 easy,sign,look
%O A064405 0,2
%A A064405 _Robert G. Wilson v_, Sep 29 2001