This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A064412 #20 Apr 12 2016 03:20:53 %S A064412 1,5,14,32,60,103,160,238,335,459,606,786,994,1241,1520,1844,2205, %T A064412 2617,3070,3580,4136,4755,5424,6162,6955,7823,8750,9758,10830,11989, %U A064412 13216,14536,15929,17421,18990,20664,22420,24287,26240,28310,30471,32755,35134,37642 %N A064412 At stage 1, start with a unit equilateral equiangular triangle. At each successive stage add 3*(n-1) new triangles around outside with edge-to-edge contacts. Sequence gives number of triangles (regardless of size) at n-th stage. %C A064412 Number of unit triangles at n-th stage = 3n(n-1)/2 + 1, A005448. %D A064412 Anthony Gardiner, "Mathematical Puzzling," Dover Publications, Inc., Mineola, NY., 1987, page 88. %H A064412 N. J. A. Sloane, <a href="/A064412/a064412.jpg">Illustration of initial terms</a> %H A064412 <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (2,0,-2,2,-2,0,2,-1). %F A064412 G.f.: (1+x+x^2)(1+2x+x^2+3x^3)/((1-x)^2(1-x^2)(1-x^4)). %F A064412 a(2n+1) = (7n^3+12n^2+7n+2)/2; a(2n) = (28n^3+6n^2+4n+1+(-1)^(n+1))/8. - _Len Smiley_, Oct 07 2001 %F A064412 a(n) = (14*n^3+6*n^2+5*n+7+3*(n-1)*(-1)^n-2*((-1)^((2*n-1+(-1)^n)/4)+(-1)^((6*n-1+(-1)^n)/4)))/32. - _Luce ETIENNE_, Jun 27 2014 %e A064412 a(4) = 32: 19 triangles of side 1, 10 of side 2 and 3 of side 3. %p A064412 A064412:=n->(14*n^3+6*n^2+5*n+7+3*(n-1)*(-1)^n-2*((-1)^((2*n-1+(-1)^n)/4)+(-1)^((6*n-1+(-1)^n)/4)))/32; seq(A064412(n), n=1..30); # _Wesley Ivan Hurt_, Jun 27 2014 %t A064412 CoefficientList[Series[(1 + x + x^2) (1 + 2 x + x^2 + 3 x^3)/((1 - x)^2 (1 - x^2) (1 - x^4)), {x, 0, 30}], x] (* _Wesley Ivan Hurt_, Jun 27 2014 *) %t A064412 LinearRecurrence[{2,0,-2,2,-2,0,2,-1},{1,5,14,32,60,103,160,238},50] (* _Harvey P. Dale_, Apr 12 2016 *) %o A064412 (PARI) a(n)=polcoeff(x*(1+x+x^2)*(1+2*x+x^2+3*x^3)/((1-x)^2*(1-x^2)*(1-x^4))+x*O(x^n),n) %Y A064412 Cf. A056640. %K A064412 nonn,easy %O A064412 1,2 %A A064412 _Robert G. Wilson v_, Sep 29 2001