cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064438 Numbers which are divisible by the sum of their quaternary digits.

This page as a plain text file.
%I A064438 #49 May 10 2025 23:14:07
%S A064438 1,2,3,4,6,8,9,12,16,18,20,21,24,28,30,32,33,35,36,40,42,48,50,52,54,
%T A064438 60,63,64,66,68,69,72,76,78,80,81,84,88,90,91,96,100,102,108,112,114,
%U A064438 120,126,128,129,132,136,138,140,144,148,150,154,156,160,162,168,171,180
%N A064438 Numbers which are divisible by the sum of their quaternary digits.
%C A064438 A good "puzzle" sequence -- guess the rule given the first twenty or so terms.
%H A064438 Harry J. Smith, <a href="/A064438/b064438.txt">Table of n, a(n) for n = 1..1000</a>
%H A064438 Paul Dalenberg and Tom Edgar, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/56-2.html">Consecutive factorial base Niven numbers</a>, Fibonacci Quart. (2018) Vol. 56, No. 2, 163-166.
%e A064438 Quaternary representation of 28 is 130, 1 + 3 + 0 = 4 divides 28.
%t A064438 Select[Range[200],Divisible[#,Total[IntegerDigits[#,4]]]&] (* _Harvey P. Dale_, Jun 09 2011 *)
%o A064438 (ARIBAS) maxarg := 190; for n := 1 to maxarg do if n mod sum(quaternarray(n)) = 0 then write(n," "); end; end; function quaternarray(n: integer): array; var k: integer; stk: stack; begin while n > 0 do k := n mod 4; stack_push(stk,k); n := (n - k) div 4; end; return stack2array(stk); end;
%o A064438 (PARI) isok(n) = !(n % sumdigits(n, 4)); \\ _Michel Marcus_, Jun 24 2018
%o A064438 (Python)
%o A064438 from sympy.ntheory.factor_ import digits
%o A064438 print([n for n in range(1, 201) if n%sum(digits(n, 4)[1:]) == 0]) # _Indranil Ghosh_, Apr 24 2017
%Y A064438 Cf. A005349 (decimal), A049445 (binary), A064150 (ternary).
%K A064438 base,easy,nice,nonn
%O A064438 1,2
%A A064438 _Len Smiley_, Oct 01 2001
%E A064438 More terms from _Matthew Conroy_, Oct 02 2001
%E A064438 Offset changed from 0 to 1 by _Harry J. Smith_, Sep 14 2009