cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064442 Decimal expansion of number with continued fraction expansion 2, 3, 5, 7, 11, 13, 17, 19, ... = 2.3130367364335829063839516 ...

This page as a plain text file.
%I A064442 #26 Sep 06 2021 15:03:26
%S A064442 2,3,1,3,0,3,6,7,3,6,4,3,3,5,8,2,9,0,6,3,8,3,9,5,1,6,0,2,6,4,1,7,8,2,
%T A064442 4,7,6,3,9,6,6,8,9,7,7,1,8,0,3,2,5,6,3,4,0,2,1,0,1,2,4,4,4,2,1,4,4,5,
%U A064442 6,4,7,3,1,7,7,6,2,7,2,2,4,3,6,9,5,3,2,2,0,1,7,2,3,8,3,2,8,1,7,4,5,3,0,1,5,8,2
%N A064442 Decimal expansion of number with continued fraction expansion 2, 3, 5, 7, 11, 13, 17, 19, ... = 2.3130367364335829063839516 ...
%C A064442 Continued fraction expansion of the prime numbers. - _Harvey P. Dale_, Sep 25 2012
%H A064442 MathOverflow, <a href="https://mathoverflow.net/questions/128676/what-is-the-effect-of-adding-1-2-to-a-continued-fraction">What is the effect of adding 1/2 to a continued fraction?</a>
%F A064442 1/A084255. - _Franklin T. Adams-Watters_, Jul 31 2009
%F A064442 From _Peter Bala_, Nov 26 2019: (Start)
%F A064442 Denoting the constant by c we have the related simple continued fraction expansions (prime(n) denotes the n-th prime number):
%F A064442 2*c = [4; 1, 1, 1, 2, 14, 5, 1, 1, 6, 34, 9, 1, 1, 11, 58, 15, 1, 1, 18, 82, 21, ..., 1, 1, (prime(3*n) - 1)/2, 2*prime(3*n+1), (prime(3*n+2) - 1)/2, ...];
%F A064442 (1/2)*c = [1; 6, 2, 1, 1, 3, 22, 6, 1, 1, 8, 38, 11, 1, 1, 14, 62, 18, 1, 1, 20, 86, 23, ..., 1, 1, (prime(3*n+1) - 1)/2, 2*prime(3*n+2), (prime(3*n+3) - 1)/2, ...];
%F A064442 (c + 1)/(c - 1) = [2; 1, 1, 10, 3, 1, 1, 5, 26, 8, 1, 1, 9, 46, 14, 1, 1, 15, 74, 20, ..., 1, 1, (prime(3*n+2) - 1)/2, 2*prime(3*n+3), (prime(3*n+4) - 1)/2, ...]. (End)
%e A064442 2.313036736433582906383951602641782476396689771803256340210124442144564731776...
%t A064442 RealDigits[ N[ FromContinuedFraction[ Table[ Prime[n], {n, 1, 100} ]], 100]] [[1]]
%t A064442 RealDigits[FromContinuedFraction[Prime[Range[200]]],10,120][[1]] (* _Harvey P. Dale_, Sep 06 2021 *)
%Y A064442 Cf. A060997, A302937.
%K A064442 cons,nonn
%O A064442 1,1
%A A064442 _Robert G. Wilson v_, Oct 01 2001