Original entry on oeis.org
2, 3, 5, 7, 10, 11, 13, 17, 19, 21, 23, 25, 27, 29, 30, 31, 37, 41, 42, 43, 45, 47, 50, 53, 54, 59, 61, 63, 65, 66, 67, 69, 71, 73, 74, 78, 79, 83, 85, 86, 89, 93, 97, 99, 101, 103, 105, 107, 109, 110, 112, 113, 115, 117, 119, 123, 126, 127, 129, 131, 135, 137, 138
Offset: 1
Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Oct 16 2001
-
def divsign(s, k):
if not k.divides(s): return 0
return (-1)^(s//k)*k
def A(n):
s = n + 1
for k in srange(n, 1, -1):
s -= divsign(s, k)
return s
# Use with caution: search range must be adjusted as necessary!
def A064627List(size):
return sorted(Set([A(n) for n in (1..3*size)]))[0:size]
print(A064627List(63)) # Peter Luschny, Sep 16 2019
Original entry on oeis.org
1, 4, 6, 8, 9, 12, 14, 15, 16, 18, 20, 22, 24, 26, 28, 32, 33, 34, 35, 36, 38, 39, 40, 44, 46, 48, 49, 51, 52, 55, 56, 57, 58, 60, 62, 64, 68, 70, 72, 75, 76, 77, 80, 81, 82, 84, 87, 88, 90, 91, 92, 94, 95, 96, 98, 100, 102, 104, 106, 108, 111, 114, 116, 118, 120, 121, 122
Offset: 1
Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Oct 16 2001
Original entry on oeis.org
3, 5, 6, 7, 11, 12, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 117, 125, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 198, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257
Offset: 1
Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Oct 17 2001
A327093
Sequence obtained by swapping each (k*(2n))-th element of the positive integers with the (k*(2n-1))-th element, for all k > 0, in ascending order.
Original entry on oeis.org
2, 3, 7, 5, 11, 13, 15, 10, 17, 19, 23, 25, 27, 21, 40, 16, 35, 36, 39, 37, 58, 33, 47, 50, 52, 43, 45, 34, 59, 78, 63, 31, 76, 55, 82, 67, 75, 57, 99, 56, 83, 112, 87, 61, 126, 69, 95, 92, 97, 96, 133, 71, 107, 81, 142, 79, 139, 91, 119, 155, 123, 93, 122, 51, 151, 146, 135
Offset: 1
-
func a(n int) int {
for k := n; k > 0; k-- {
if n%k == 0 {
if (n/k)%2 == 0 {
n = n - k
} else {
n = n + k
}
}
}
return n
}
-
def a(n):
for k in srange(n, 0, -1):
if k.divides(n):
n += k if is_odd(n//k) else -k
return n
print([a(n) for n in (1..67)]) # Peter Luschny, Sep 14 2019
Original entry on oeis.org
1, 4, 6, 8, 9, 12, 14, 18, 20, 22, 24, 26, 28, 29, 30, 32, 38, 41, 42, 44, 46, 48, 49, 53, 54, 60, 62, 64, 65, 66, 68, 70, 72, 73, 74, 77, 80, 84, 85, 86, 90, 94, 98, 100, 102, 104, 106, 108, 109, 110, 111, 114, 116, 118, 120, 124, 125, 128, 130, 132, 136, 137, 138, 140, 149, 150
Offset: 1
A372297
Limit of the recursion B(k) = T[k](B(k-1)), where B(1) = (1,2,3,4,5,...) and T[k] is the transformation that permutes the entries k(2i-1) and k(2i) for all positive integers i, if k is prime.
Original entry on oeis.org
1, 4, 8, 2, 12, 3, 16, 6, 10, 5, 24, 9, 28, 7, 18, 14, 36, 15, 40, 20, 26, 11, 48, 21, 27, 13, 32, 22, 60, 25, 64, 30, 42, 17, 39, 33, 76, 19, 50, 35, 84, 38, 88, 34, 52, 23, 96, 45, 54, 46, 66, 44, 108, 51, 63, 49, 74, 29, 120, 55, 124, 31, 65, 62, 75
Offset: 1
B(1) = 1,2,3,4, 5,6,7,8, 9,10,11,12,13,14,...
B(2) = 1,4,3,2, 5,8,7,6, 9,12,11,10,13,16,...
B(3) = 1,4,8,2, 5,3,7,6,10,12,11, 9,13,16,...
B(4) = 1,4,8,2, 5,3,7,6,10,12,11, 9,13,16,... (No change)
B(5) = 1,4,8,2,12,3,7,6,10, 5,11, 9,13,16,...
-
max = 66; b[1, j_] := j; b[k_, j_] := b[k, j] = b[k-1, j]; Do[If[PrimeQ[k],b[k, 2j*k-k] = b[k-1, 2j*k]; b[k, 2j*k] = b[k-1, 2j*k-k],b[k,j ]=b[k-1,j]], {k, 2, max}, {j, 1, max}]; a[n_] := b[max, n]; Table[a[n], {n, 1, max}]
A266679
Positive integers not shotgun (or Schrotschuss) numbers, in order of the first number to be permuted forward by the transformations T[k] where k = 2 or k is odd.
Original entry on oeis.org
2, 3, 5, 7, 10, 11, 13, 21, 17, 19, 30, 23, 27, 25, 29, 31, 45, 42, 37, 54, 41, 43, 65, 47, 50, 69, 53, 66, 78, 59, 61, 63, 86, 67, 93, 71, 73, 105, 85, 79, 74, 83, 110, 117, 89, 112, 126, 115, 97, 99, 101
Offset: 1
Showing 1-7 of 7 results.
Comments