This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A064515 #13 Apr 21 2025 23:05:43 %S A064515 0,1,1,2,2,2,3,3,3,4,3,4,4,5,4,5,4,5,6,5,6,5,6,5,7,6,7,6,7,6,8,7,6,8, %T A064515 7,8,7,9,8,7,9,8,7,9,8,10,9,8,10,9,8,10,9,11,8,10,9,11,10,9,11,10,12, %U A064515 9,11,10,12,9,11,10,12,11,13,10,12,11,13,10,12,11,13,10,12,14,11,13,12 %N A064515 Write A064476(n) = 2^i(n)*3^j(n); sequence gives values of j(n). %o A064515 (ARIBAS) function a064515(maxarg: integer); var j: integer; ar: array; begin ar := p2p3(maxarg); for j := 0 to maxarg - 1 do write(ar[j][2]," "); end; end; a064515(95); (* For definition of function p2p3 see A064476. *) %o A064515 (Python) %o A064515 from sympy import integer_log %o A064515 def A064515(n): %o A064515 def bisection(f,kmin=0,kmax=1): %o A064515 while f(kmax) > kmax: kmax <<= 1 %o A064515 kmin = kmax >> 1 %o A064515 while kmax-kmin > 1: %o A064515 kmid = kmax+kmin>>1 %o A064515 if f(kmid) <= kmid: %o A064515 kmax = kmid %o A064515 else: %o A064515 kmin = kmid %o A064515 return kmax %o A064515 def f(x): return n+x-sum(max(0,min((i<<1)+1,(x//3**i).bit_length())-i) for i in range(integer_log(x,3)[0]+1)) %o A064515 return integer_log((m:=bisection(f,n,n))>>(m-1&~m).bit_length(),3)[0] # _Chai Wah Wu_, Mar 26 2025 %Y A064515 Cf. A064476, A064514. %K A064515 nonn,easy %O A064515 1,4 %A A064515 _Vladeta Jovovic_, Oct 07 2001, Oct 07 2001 %E A064515 More terms from _Klaus Brockhaus_, Oct 12 2001