A064527 Numbers k such that there exists a finite group G of order k such that all entries in its character table are integers.
1, 2, 4, 6, 8, 12, 16, 18, 24, 32, 36, 48, 54, 64, 72, 96, 108, 120, 128, 144, 162, 192, 200, 216, 240, 256, 288, 324, 384, 400, 432, 480, 486, 512, 576, 648, 720, 768, 800, 864, 960, 972, 1024, 1152, 1200, 1296, 1440, 1458, 1536, 1600, 1728, 1920, 1944
Offset: 1
Links
- Tim Dokchitser, Rational groups
- Roderick Gow, Groups whose characters are rational-valued, J. Algebra 40 (1976) 280-299.
- Groupprops, Finite rational group
- Hegedus Pal, Structure of Solvable Rational Groups, Proc. London Math. Soc. (2005) 90 (2): 439-471.
Programs
-
GAP
HasIntegerCharTable := function(G) local cc, ccr, e; cc := ConjugacyClasses(G); ccr := List(cc, Representative); e := Exponent(G); return ForAll([2..e-1], m->(not (IsPrimeInt(m) and GcdInt(m, e)=1)) or ForAll([1..Length(cc)], j->ccr[j]^m in cc[j])); end; A064527 := function(max) local res, i, j; res := [1]; for i in [2, 4..max-(max mod 2)] do if ForAny(res, j->i/j in res) then Add(res, i); continue; fi; for j in [1..NumberSmallGroups(i)] do if HasIntegerCharTable(SmallGroup(i, j)) then Add(res, i); continue; fi; od; od; return res; end; # Eric M. Schmidt, Feb 22 2013
Extensions
More terms from Derek Holt (mareg(AT)csv.warwick.ac.uk), Oct 07 2001
More terms from Eric M. Schmidt, Feb 22 2013
Comments