This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A064572 #36 Dec 30 2017 05:13:17 %S A064572 0,1,2,5,6,10,11,17,20,26,27,38,39,47,51,65,66,82,83,102,107,123,124, %T A064572 153,156,178,185,216,217,254,255,297,304,342,346,408,409,457,466,535, %U A064572 536,609,610,690,704,780,781,895,898,998,1009,1130,1131,1263,1268,1418 %N A064572 Number of ways to partition n into parts which are all powers of some integer k. %C A064572 Number of ways to partition n as Sum_i k^e_i, where the exponents e_i are not all 0. %C A064572 The exponents cannot all be 0, e.g. a(2)=1 arises from 2^1, and does not include 2^0+2^0. - _Shujing Lyu_, Apr 23 2016 %H A064572 Andrew Howroyd, <a href="/A064572/b064572.txt">Table of n, a(n) for n = 1..1000</a> (terms 1..220 from Shujing Lyu) %F A064572 G.f.: Sum_{k>=2} 1/(Product_{r>=0} 1-x^(k^r)) - 1/(1-x). - _Andrew Howroyd_, Dec 29 2017 %e A064572 a(4)=5: 4^1, 3^1+3^0, 2^2, 2*2^1, 2^1+2*2^0. %o A064572 (PARI) first(n)={Vec(sum(k=2, n, 1/prod(r=0, logint(n,k), 1-x^(k^r) + O(x*x^n)) - 1/(1-x), 0), -n)} \\ _Andrew Howroyd_, Dec 29 2017 %Y A064572 Cf. A028422, A064573, A064574, A064575, A064576, A064577, A292477. %K A064572 easy,nonn %O A064572 1,3 %A A064572 _Marc LeBrun_, Sep 20 2001