This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A064580 #50 Aug 18 2024 16:42:19 %S A064580 1,1,1,1,2,2,1,3,5,5,1,4,9,14,13,1,5,14,28,40,36,1,6,20,48,87,118,104, %T A064580 1,7,27,75,161,273,357,309,1,8,35,110,270,536,866,1100,939,1,9,44,154, %U A064580 423,951,1782,2772,3441,2905,1,10,54,208,630,1572,3310,5928,8946,10900,9118 %N A064580 Triangle associated with rooted trees with a degree constraint (A036765). %C A064580 Main diagonal is A036765. - _Paul D. Hanna_, Nov 18 2016 %F A064580 a(n, k) = a(n-1, k) + a(n-1, k-1) + a(n-1, k-2) + a(n-1, k-3) with a(0, 0)=1 and a(n, k)=0 if n < k or k < 0. %e A064580 Triangle begins: %e A064580 1; %e A064580 1, 1; %e A064580 1, 2, 2; %e A064580 1, 3, 5, 5; %e A064580 1, 4, 9, 14, 13; %e A064580 1, 5, 14, 28, 40, 36; %e A064580 ... %t A064580 a[n_, k_] /; 0 <= k <= n = a[n, k] = a[n - 1, k] + a[n - 1, k - 1] + a[n - 1, k - 2] + a[n - 1, k - 3]; a[0, 0] = 1; a[_, _] = 0; %t A064580 Table[a[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Jul 30 2018 *) %o A064580 (Sage) # uses[riordan_array from A256893] %o A064580 M = riordan_array(1, x/(1+x+x^2+x^3), 12).inverse() %o A064580 for m in M[1:]: %o A064580 print([r for r in reversed(list(m)) if r != 0]) # _Peter Luschny_, Aug 17 2016 %Y A064580 Columns include A000012, A000027, A000096. %Y A064580 Main diagonal is A036765. %Y A064580 The sequence of triangles A010054 (triangle indicator), A007318 (Pascal), A026300 (Motzkin), A064580, ... converges to the triangle A009766 (Catalan). %Y A064580 Row sums give A159772. %K A064580 nonn,tabl %O A064580 0,5 %A A064580 _Henry Bottomley_, Sep 21 2001 %E A064580 Edited by _N. J. A. Sloane_ at the suggestion of _Andrew S. Plewe_, Jun 17 2007