A064606 Numbers k such that A064603(k) is divisible by k.
1, 2, 7, 45, 184, 210, 267, 732, 1282, 3487, 98374, 137620, 159597, 645174, 3949726, 7867343, 13215333, 14153570, 14262845, 317186286, 337222295, 2788845412, 10937683400, 72836157215, 95250594634
Offset: 1
Examples
Adding divisor-cube sums for j = 1..7 gives 1+9+28+73+126+252+344 = 833 = 7*119, which is divisible by 7, so 7 is a term and the integer quotient is 119.
Crossrefs
Programs
-
Mathematica
A064603 = Accumulate[Table[DivisorSigma[3, k], {k, 1, 1000000}]]; Select[Range[Length[A064603]], Divisible[A064603[[#]], #] &] (* Vaclav Kotesovec, Jul 11 2021 *)
Formula
(Sum_{j=1..k} sigma_3(j)) mod k = A064603(k) mod k = 0.
Extensions
a(15)-a(21) from Donovan Johnson, Jun 21 2010
a(22)-a(25) from Amiram Eldar, Jan 18 2024
Comments