A064607 Numbers k such that A064604(k) is divisible by k.
1, 2, 7, 151, 257, 1823, 3048, 5588, 6875, 7201, 8973, 24099, 5249801, 9177919, 18926164, 70079434, 78647747, 705686794, 2530414370, 3557744074, 25364328389, 32487653727, 66843959963
Offset: 1
Examples
Adding 4th-power divisor-sums for j = 1..7 gives 1+17+82+273+626+1394+2402 = 4795 which is divisible by 7, so 7 is a term and the integer quotient is 655.
Crossrefs
Programs
-
Mathematica
k = 1; lst = {}; s = 0; While[k < 1000000001, s = s + DivisorSigma[4, k]; If[ Mod[s, k] == 0, AppendTo[lst, k]; Print@ k]; k++]; lst (* Robert G.Wilson v, Aug 25 2011 *)
Formula
(Sum_{j=1..k} sigma_4(j)) mod k = A064604(k) mod k = 0.
Extensions
a(13)-a(18) from Donovan Johnson, Jun 21 2010
a(19)-a(23) from Amiram Eldar, Jan 18 2024
Comments