cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064624 Generalization of the Genocchi numbers given by the Gandhi polynomials A(n+1,r) = r^3 A(n, r + 1) - (r - 1)^3 A(n, r); A(1,r) = r^3 - (r-1)^3.

This page as a plain text file.
%I A064624 #13 Jun 22 2013 13:16:11
%S A064624 1,1,7,145,6631,566641,81184327,18070338385,5905039303591,
%T A064624 2711929990866481,1690633724369840647,1390752644563701636625,
%U A064624 1474612871875198657851751,1975728790062794178772769521
%N A064624 Generalization of the Genocchi numbers given by the Gandhi polynomials A(n+1,r) = r^3 A(n, r + 1) - (r - 1)^3 A(n, r); A(1,r) = r^3 - (r-1)^3.
%D A064624 M. Domaratzki, A Generalization of the Genocchi Numbers with Applications to Enumeration of Finite Automata, Technical Report 2001-449, Department of Computing and Information Science, Queen's University of Kingston (Kingston, Canada).
%H A064624 M. Domaratzki, <a href="http://www.cs.queensu.ca/TechReports/Reports/2001-449.ps">A Generalization of the Genocchi Numbers with Applications to ...</a>
%H A064624 Michael Domaratzki, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL7/Domaratzki/doma23.html">Combinatorial Interpretations of a Generalization of the Genocchi Numbers</a>, Journal of Integer Sequences, Vol. 7 (2004), Article 04.3.6.
%F A064624 a(n) = A(n-1, 1) for the above Gandhi polynomials.
%F A064624 O.g.f.: Sum_{n>=0} n!^3 * x^n / Product_{k=1..n} (1 + k^3*x). [From Paul D. Hanna, Jul 21 2011]
%e A064624 O.g.f.: A(x) = 1 + x + 7*x^2 + 145*x^3 + 6631*x^4 + 566641*x^5 +...
%e A064624 where A(x) = 1 + x/(1+x) + 2!^3*x^2/((1+x)*(1+8*x)) + 3!^3*x^3/((1+x)*(1+8*x)*(1+27*x)) + 4!^3*x^4/((1+x)*(1+8*x)*(1+27*x)*(1+64*x)) +... [From Paul D. Hanna, Jul 21 2011]
%t A064624 a[n_ /; n >= 0, r_ /; r >= 0] := a[n, r] = r^3*a[n-1, r+1] - (r-1)^3*a[n-1, r]; a[1, r_ /; r >= 0] := r^3-(r-1)^3; a[_, _] = 1; a[n_] := a[n-1, 1]; Table[a[n], {n, 0, 13}] (* _Jean-François Alcover_, May 23 2013 *)
%o A064624 (PARI) {a(n)=polcoeff(sum(m=0,n,m!^3*x^m/prod(k=1,m,1+k^3*x+x*O(x^n))),n)}
%Y A064624 Cf. A001469, A064625.
%K A064624 easy,nonn
%O A064624 0,3
%A A064624 Mike Domaratzki (mdomaratzki(AT)alumni.uwaterloo.ca), Sep 28 2001