cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A064625 Generalization of the Genocchi numbers. Generated by the Gandhi polynomials A(n+1,r) = r^4 A(n,r+1) - (r-1)^4 A(n,r); A(1,r) = r^4 - (r-1)^4.

Original entry on oeis.org

1, 1, 15, 1025, 209135, 100482849, 97657699279, 172687606607425, 513828770061202095, 2422699282016359575905, 17259669919850500726265231, 178741720937382151333667162241, 2605965447000176066894638515610735
Offset: 0

Views

Author

Mike Domaratzki (mdomaratzki(AT)alumni.uwaterloo.ca), Sep 28 2001

Keywords

Examples

			O.g.f.: A(x) = 1 + x + 15*x^2 + 1025*x^3 + 209135*x^4 + 100482849*x^5 +...
where A(x) = 1 + x/(1+x) + 2!^4*x^2/((1+x)*(1+16*x)) + 3!^4*x^3/((1+x)*(1+16*x)*(1+81*x)) + 4!^4*x^4/((1+x)*(1+16*x)*(1+81*x)*(1+256*x)) +... [From Paul D. Hanna, Jul 21 2011]
		

References

  • M. Domaratzki, A Generalization of the Genocchi Numbers with Applications to Enumeration of Finite Automata. Technical Report 2001-449, Department of Computing and Information Science, Queen's University at Kingston (Kingston, Canada).

Crossrefs

Programs

  • Mathematica
    a[n_ /; n >= 0, r_ /; r >= 0] := a[n, r] = r^4*a[n-1, r+1]-(r-1)^4*a[n-1, r]; a[1, r_ /; r >= 0] := r^4-(r-1)^4; a[, ] = 1; a[n_] := a[n-1, 1]; Table[a[n], {n, 0, 12}] (* Jean-François Alcover, May 23 2013 *)
  • PARI
    {a(n)=polcoeff(sum(m=0,n,m!^4*x^m/prod(k=1,m,1+k^4*x+x*O(x^n))),n)}

Formula

a(n) = A(n-1, 1) for the above Gandhi polynomials.
O.g.f.: Sum_{n>=0} n!^4 * x^n / Product_{k=1..n} (1 + k^4*x). [From Paul D. Hanna, Jul 21 2011]

A065747 Triangle of Gandhi polynomial coefficients.

Original entry on oeis.org

1, 1, 3, 3, 7, 30, 51, 42, 15, 145, 753, 1656, 1995, 1410, 567, 105, 6631, 39048, 100704, 149394, 140475, 86562, 34566, 8316, 945, 566641, 3656439, 10546413, 17972598, 20133921, 15581349, 8493555, 3246642, 841239, 135135, 10395
Offset: 1

Views

Author

Mike Domaratzki (mdomaratzki(AT)alumni.uwaterloo.ca), Nov 16 2001

Keywords

Comments

First column is A064624.

Examples

			Triangle starts
1;
1, 3, 3;
7, 30, 51, 42, 15;
145, 753, 1656, 1995, 1410, 567, 105;
6631 ...
		

Crossrefs

Formula

Let B(X, n) = X^3 (B(X+1, n-1) - B(X, n-1)), B(X, 1) = X^3; then the (i, j)-th entry is the table is the coefficient of X^(2+j) in B(X, i).

A065756 Generalization of the Genocchi numbers given by the Gandhi polynomials A(n+1,r) = r^5 A(n, r + 1) - (r - 1)^5 A(n, r); A(1,r) = r^5 - (r-1)^5.

Original entry on oeis.org

1, 1, 31, 6721, 5850271, 15060446401, 94396946822431, 1258620297379341121, 32323181593821704288671, 1481630482369728860007652801, 114129022540066183425609121804831
Offset: 1

Views

Author

Mike Domaratzki (mdomaratzki(AT)alumni.uwaterloo.ca), Nov 17 2001

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_ /; n >= 0, r_ /; r >= 0] := a[n, r] = r^5*a[n-1, r+1]-(r-1)^5*a[n-1, r]; a[1, r_ /; r >= 0] := r^5-(r-1)^5; a[, ] = 1; a[n_] := a[n-1, 1]; Table[a[n], {n, 0, 10}] (* Jean-François Alcover, May 23 2013 *)

Formula

a(n) = A(n-1, 1) for the above Gandhi polynomials.

A065753 Second column of A065747.

Original entry on oeis.org

3, 30, 753, 39048, 3656439, 562400370, 132584434941, 45454204428636, 21747608978702595, 14048768969900622150, 11925183926773031604489, 13003120724393838963734064, 17866681950868968379286259471
Offset: 1

Views

Author

Mike Domaratzki (mdomaratzki(AT)alumni.uwaterloo.ca), Nov 17 2001

Keywords

Crossrefs

Showing 1-4 of 4 results.