This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A064675 #25 May 28 2021 23:03:48 %S A064675 5,27,77,714,836,948,1449,4185,4624,5405,5560,8476,8855,10175,16932, %T A064675 17080,18655,20450,20600,21183,26642,28809,31524,35631,37828,37881, %U A064675 40081,47544,48203,49240,52155,52554,53192,63344,63426,63665,79118,80800,81576,83780 %N A064675 Numbers k such that sopfr(k) = sopf(k+1), where sopf(k) = A008472(k) and sopfr(k) = A001414(k). %H A064675 Amiram Eldar, <a href="/A064675/b064675.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..500 from Harry J. Smith) %o A064675 (PARI) sopf(n)= { local(f,s=0); f=factor(n); for(i=1, matsize(f)[1], s+=f[i, 1]); return(s) } %o A064675 sopfr(n)= { local(f,s=0); f=factor(n); for(i=1, matsize(f)[1], s+=f[i, 1]*f[i, 2]); return(s) } %o A064675 { n=0; for (m=1, 10^9, if (sopfr(m)==sopf(m + 1), write("b064675.txt", n++, " ", m); if (n==500, break)) ) } \\ _Harry J. Smith_, Sep 21 2009 %o A064675 (Python) %o A064675 from sympy import factorint %o A064675 def aupton(terms): %o A064675 alst, k, sopfk, sopfrk, sopfkp1, sopfrkp1 = [], 2, 2, 3, 2, 3 %o A064675 while len(alst) < terms: %o A064675 if sopfrk == sopfkp1: alst.append(k) %o A064675 k += 1 %o A064675 fkp1 = factorint(k+1) %o A064675 sopfk, sopfkp1 = sopfkp1, sum(p for p in fkp1) %o A064675 sopfrk, sopfrkp1 = sopfrkp1, sum(p*fkp1[p] for p in fkp1) %o A064675 return alst %o A064675 print(aupton(40)) # _Michael S. Branicky_, May 27 2021 %Y A064675 Cf. A001414 (sopfr), A008472 (sopf). %K A064675 nonn %O A064675 1,1 %A A064675 _Jason Earls_, Oct 10 2001