cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064694 Add column entries of the table with rows (1,2,0,0...), (0,3,4,5,0,0...), (0,0,6,7,8,9,0,0...), (0,0,0,10,11,12,13,14,0,0...), ...

This page as a plain text file.
%I A064694 #25 Dec 11 2015 17:41:32
%S A064694 1,5,10,22,34,58,80,120,155,215,266,350,420,532,624,768,885,1065,1210,
%T A064694 1430,1606,1870,2080,2392,2639,3003,3290,3710,4040,4520,4896,5440,
%U A064694 5865,6477,6954,7638,8170,8930,9520,10360,11011,11935,12650,13662,14444
%N A064694 Add column entries of the table with rows (1,2,0,0...), (0,3,4,5,0,0...), (0,0,6,7,8,9,0,0...), (0,0,0,10,11,12,13,14,0,0...), ...
%H A064694 Harry J. Smith, <a href="/A064694/b064694.txt">Table of n, a(n) for n=1..1000</a>
%H A064694 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (1,3,-3,-3,3,1,-1).
%F A064694 a(2n-1) = n*(n+1)*(7*n-4)/6 (see A007584), a(2n) = n*(n+1)*(7*n+8)/6.
%F A064694 a(n) = sum{k=0..floor((n+1)/2), (n-k+1)ceiling((n-k+1)/2)+k+if(mod(n-k+1, 2) =0, ceiling((n-k+1)/2), 0)}. - _Paul Barry_, Aug 25 2004
%F A064694 a(n) = sum{k=0..floor(n/2), C(n-k+1,2)+k}; - _Paul Barry_, Jul 23 2008
%F A064694 a(n) = (2*n+1-(-1)^n)*(2*n+5-(-1)^n)*(14*n+15+17*(-1)^n)/384. - _Luce ETIENNE_, Feb 17 2015
%F A064694 From _Colin Barker_, Feb 17 2015: (Start)
%F A064694 a(n) = (7*n^3+30*n^2+32*n)/48 for n even.
%F A064694 a(n) = (7*n^3+27*n^2+17*n-3)/48 for n odd.
%F A064694 G.f.: x*(2*x^2+4*x+1) / ((x-1)^4*(x+1)^3).
%F A064694 (End)
%e A064694 a(1)=1, a(2)=2+3=5, a(3)=4+6=10, a(4)=5+7+10=22.
%t A064694 Table[ Sum[ Binomial[n-k+1, 2] + k, {k, 0, Floor[n/2]}], {n, 1, 45}] (* _Jean-François Alcover_, Sep 16 2013 *)
%t A064694 LinearRecurrence[{1,3,-3,-3,3,1,-1},{1,5,10,22,34,58,80},50] (* _Harvey P. Dale_, Dec 11 2015 *)
%o A064694 (PARI) { for (n=1, 1000, a=sum(k=0, n\2, binomial(n - k + 1, 2) + k); write("b064694.txt", n, " ", a) ) } \\ _Harry J. Smith_, Sep 22 2009
%o A064694 (PARI) Vec(x*(2*x^2+4*x+1)/((x-1)^4*(x+1)^3) + O(x^100)) \\ _Colin Barker_, Feb 17 2015
%Y A064694 Cf. A007584.
%K A064694 nonn,easy,nice
%O A064694 1,2
%A A064694 Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Oct 12 2001