cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064710 Numbers k such that the sum of divisors of k and the product of divisors of k are both perfect squares.

This page as a plain text file.
%I A064710 #31 Jan 07 2020 09:07:12
%S A064710 1,22,66,70,81,94,115,119,170,210,214,217,265,282,310,322,343,345,357,
%T A064710 364,382,385,472,497,510,517,527,642,651,679,710,742,745,782,795,820,
%U A064710 862,884,889,930,935,966,970,1029,1066,1080,1092,1146,1155,1174
%N A064710 Numbers k such that the sum of divisors of k and the product of divisors of k are both perfect squares.
%H A064710 Amiram Eldar, <a href="/A064710/b064710.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1000 from Harry J. Smith)
%t A064710 psQ[n_]:=Module[{d=Divisors[n]},IntegerQ[Sqrt[Total[d]]] && IntegerQ[ Sqrt[Times@@d]]]; Select[Range[1200],psQ] (* _Harvey P. Dale_, Mar 07 2012 *)
%o A064710 (PARI) pd(n) = n^(numdiv(n)/2);
%o A064710 for(n=1,2000, if(issquare(sigma(n)) && issquare(pd(n)), print1(n,", ")))
%o A064710 (PARI) pd(n)= { d=numdiv(n); if (d%2, round(sqrt(n))^d, n^(d/2)) }
%o A064710 { n=0; for (m=1, 10^9, if (issquare(sigma(m)) && issquare(pd(m)), write("b064710.txt", n++, " ", m); if (n==1000, break)) ) } \\ _Harry J. Smith_, Sep 23 2009
%o A064710 (Sage) [n for n in (1..100000) if sigma(n).is_square()and prod(divisors(n)).is_square()] # _Giuseppe Coppoletta_, Dec 16 2014
%Y A064710 Cf. A007955, A000203.
%K A064710 easy,nonn
%O A064710 1,2
%A A064710 _Jason Earls_, Oct 13 2001
%E A064710 Corrected by _Harvey P. Dale_, Oct 23 2001