A064721 Potential Sierpiński numbers: integers for which the smallest m > 2^10 in A040076 such that n*2^m+1 is prime (A050921).
383, 766, 881, 1532, 1643, 1762, 2897, 3061, 3064, 3286, 3443, 3524, 3829, 4847, 4861, 5297, 5359, 5794, 5897, 6122, 6128, 6319, 6572, 6886, 7013, 7352, 7493, 7651, 7658, 7909, 7957, 8119, 8269, 8423, 8543, 8929, 9323, 9694, 9722
Offset: 1
Keywords
Programs
-
Mathematica
Do[m = 0; While[m <= 2^10 && !PrimeQ[n*2^m + 1], m++ ]; If[m > 2^10, Print[n]], {n, 1, 10^4} ]
Comments