cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064750 a(n) = n*12^n + 1.

This page as a plain text file.
%I A064750 #26 May 04 2025 04:47:50
%S A064750 1,13,289,5185,82945,1244161,17915905,250822657,3439853569,
%T A064750 46438023169,619173642241,8173092077569,106993205379073,
%U A064750 1390911669927937,17974858503684097,231105323618795521,2958148142320582657,37716388814587428865,479219999055934390273,6070119988041835610113
%N A064750 a(n) = n*12^n + 1.
%H A064750 Harry J. Smith, <a href="/A064750/b064750.txt">Table of n, a(n) for n = 0..150</a>
%H A064750 Paul Leyland, <a href="http://www.leyland.vispa.com/numth/factorization/cullen_woodall/cw.htm">Factors of Cullen and Woodall numbers</a>.
%H A064750 Paul Leyland, <a href="http://www.leyland.vispa.com/numth/factorization/cullen_woodall/gcw.htm">Generalized Cullen and Woodall numbers</a>.
%H A064750 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (25,-168,144).
%F A064750 a(n) = 25*a(n-1) - 168*a(n-2) + 144*a(n-3), a(0)=1, a(1)=13, a(2)=289. - _Harvey P. Dale_, Apr 30 2015
%F A064750 G.f.: (1 - 12*x + 142*x^2 - 250*x^3 + 1680*x^4 - 1440*x^5)/((1 - 12*x)^2*(1 - x)). - _Vincenzo Librandi_, Jun 21 2018
%F A064750 From _Elmo R. Oliveira_, May 03 2025: (Start)
%F A064750 E.g.f.: exp(x)*(1 + 12*x*exp(11*x)).
%F A064750 a(n) = A064758(n) + 2 for n >= 1. (End)
%t A064750 Table[n*12^n+1,{n,0,20}] (* or *) LinearRecurrence[{25,-168,144},{1,13,289},20] (* _Harvey P. Dale_, Apr 30 2015 *)
%t A064750 CoefficientList[Series[(1 - 12 x + 142 x^2 - 250 x^3 + 1680 x^4 - 1440 x^5) / ((1 - 12 x)^2 (1 - x)), {x, 0, 33}], x] (* _Vincenzo Librandi_, Jun 21 2018 *)
%o A064750 (PARI) a(n) = { n*12^n + 1 } \\ _Harry J. Smith_, Sep 24 2009
%o A064750 (Magma) [n*12^n + 1: n in [0..30]]; // _Vincenzo Librandi_, Jun 21 2018
%Y A064750 Cf. A002064, A064758.
%K A064750 nonn,easy
%O A064750 0,2
%A A064750 _N. J. A. Sloane_, Oct 19 2001