This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A064752 #23 May 06 2025 09:34:32 %S A064752 5,71,647,5183,38879,279935,1959551,13436927,90699263,604661759, %T A064752 3990767615,26121388031,169789022207,1097098297343,7052774768639, %U A064752 45137758519295,287753210560511,1828079220031487,11577835060199423,73123168801259519,460675963447934975,2895677484529876991 %N A064752 a(n) = n*6^n - 1. %H A064752 Vincenzo Librandi, <a href="/A064752/b064752.txt">Table of n, a(n) for n = 1..1000</a> %H A064752 Paul Leyland, <a href="http://www.leyland.vispa.com/numth/factorization/cullen_woodall/cw.htm">Factors of Cullen and Woodall numbers</a>. %H A064752 Paul Leyland, <a href="http://www.leyland.vispa.com/numth/factorization/cullen_woodall/gcw.htm">Generalized Cullen and Woodall numbers</a>. %H A064752 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (13,-48,36). %F A064752 From _Harvey P. Dale_, May 25 2011: (Start) %F A064752 a(n) = 13*a(n-1) - 48*a(n-2) + 36*a(n-3); a(1)=5, a(2)=71, a(3)=647. %F A064752 G.f.: 6*x/(1-6*x)^2 + x/(x-1). (End) %F A064752 From _Elmo R. Oliveira_, May 05 2025: (Start) %F A064752 E.g.f.: 1 + exp(x)*(6*x*exp(5*x) - 1). %F A064752 a(n) = A036292(n) - 1. (End) %t A064752 Table[n 6^n-1,{n,25}] (* or *) LinearRecurrence[{13,-48,36},{5,71,647}, 25] (* _Harvey P. Dale_, May 25 2011 *) %o A064752 (Magma) [ n*6^n-1: n in [1..20]]; // _Vincenzo Librandi_, Sep 16 2011 %Y A064752 Cf. A003261, A036292. %K A064752 nonn,easy %O A064752 1,1 %A A064752 _N. J. A. Sloane_, Oct 19 2001