cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064757 a(n) = n*11^n - 1.

This page as a plain text file.
%I A064757 #34 Sep 09 2024 12:00:30
%S A064757 10,241,3992,58563,805254,10629365,136410196,1714871047,21221529218,
%T A064757 259374246009,3138428376720,37661140520651,448795257871102,
%U A064757 5316497670165373,62658722541234764,735195677817154575,8592599484487994106,100078511642860166657,1162022718519876379528
%N A064757 a(n) = n*11^n - 1.
%C A064757 Conjecture: satisfies a linear recurrence having signature (23,-143,121). - _Harvey P. Dale_, May 12 2019
%C A064757 This conjecture is true since a(n) - a(n-1) yields the recurrence 1 + 10*n + 11*n*a(n-1) - (n-1)*a(n) = 0 with polynomial coefficients in n. - _Georg Fischer_, Feb 19 2021
%H A064757 Vincenzo Librandi, <a href="/A064757/b064757.txt">Table of n, a(n) for n = 1..900</a>
%H A064757 Paul Leyland, <a href="https://web.archive.org/web/20120204131613/http://www.leyland.vispa.com/numth/factorization/cullen_woodall/cw.htm">Factors of Cullen and Woodall numbers</a>.
%H A064757 Paul Leyland, <a href="https://web.archive.org/web/20120204131629/http://www.leyland.vispa.com/numth/factorization/cullen_woodall/gcw.htm">Generalized Cullen and Woodall numbers</a>.
%H A064757 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (23,-143,121).
%F A064757 From _Elmo R. Oliveira_, Sep 07 2024: (Start)
%F A064757 G.f.: x*(121*x^2 - 11*x - 10)/((x - 1)*(11*x - 1)^2).
%F A064757 E.g.f.: 1 + exp(x)*(11*x*exp(10*x) - 1).
%F A064757 a(n) = 23*a(n-1) - 143*a(n-2) + 121*a(n-3) for n > 3.
%F A064757 a(n) = A064749(n) - 2. (End)
%p A064757 k:= 11; f:= gfun:-rectoproc({1 + (k-1)*n + k*n*a(n-1) - (n-1)*a(n) = 0, a(1) = k-1}, a(n), remember): map(f, [$1..20]); # _Georg Fischer_, Feb 19 2021
%t A064757 Table[n*11^n-1,{n,20}] (* _Harvey P. Dale_, May 12 2019 *)
%o A064757 (Magma) [n*11^n - 1: n in [1..20]]; // _Vincenzo Librandi_, Sep 16 2011
%Y A064757 Cf. for a(n) = n*k^n - 1: -A000012(k=0), A001477(k=1), A003261 (k=2), A060352 (k=3), A060416 (k=4), A064751 (k=5), A064752 (k=6), A064753 (k=7), A064754 (k=8), A064755 (k=9), A064756 (k=10), this sequence (k=11), A064758 (k=12).
%Y A064757 Cf. A064749.
%K A064757 nonn,easy
%O A064757 1,1
%A A064757 _N. J. A. Sloane_, Oct 19 2001