This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A064799 #27 Mar 31 2024 10:23:19 %S A064799 6,9,13,16,21,25,31,34,39,47,51,58,63,67,72,79,86,89,97,103,106,113, %T A064799 118,125,135,140,143,149,153,158,173,179,186,189,200,203,211,218,223, %U A064799 230,237,241,253,256,261,264,277,291,296,299,305,313,316,327,334,341 %N A064799 Sum of n-th prime number and n-th composite number. %D A064799 Ivan Grischenko, ivansasha(AT)mtu-net.ru, private communication. %H A064799 Harry J. Smith, <a href="/A064799/b064799.txt">Table of n, a(n) for n = 1..1000</a> %F A064799 a(n) = prime(n) + composite(n). %F A064799 From _Jaroslav Krizek_, Dec 13 2009: (Start) %F A064799 a(n) = A000040(n) + A002808(n). %F A064799 a(n) = A171639(n+1). (End) %e A064799 a(1)=6 because the first prime is 2 and the first composite is 4; 2 + 4 = 6 %e A064799 a(2)=9 because prime(2)=3 and composite(2)=6; 3 + 6 = 9. %t A064799 Module[{nn=100,cmps},cmps=Select[Range[nn],CompositeQ];Total/@Thread[{Prime[Range[ Length[ cmps]]],cmps}]] (* _Harvey P. Dale_, Mar 31 2024 *) %o A064799 (PARI) %o A064799 nextComp(n)= { if (!isprime(n), return(n)); return(n + 1) } %o A064799 { p=1; c=3; for (n=1, 100, p=nextprime(p + 1); c=nextComp(c + 1); print1(p + c, ", ") ) } \\ _Harry J. Smith_, Sep 25 2009 %o A064799 (Python) %o A064799 from sympy import prime, composite %o A064799 def A064799(n): return prime(n)+composite(n) # _Chai Wah Wu_, Aug 30 2021 %Y A064799 Cf. A000040, A002808, A171639. %K A064799 nonn,easy %O A064799 1,1 %A A064799 _Konstantin Knop_, Oct 21 2001 %E A064799 More terms from Larry Reeves (larryr(AT)acm.org), Nov 12 2001 %E A064799 Offset changed from 0 to 1 by _Harry J. Smith_, Sep 25 2009