cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064801 Take 1, skip 2, take 2, skip 3, take 3, etc.

This page as a plain text file.
%I A064801 #43 Jul 20 2024 08:27:40
%S A064801 1,4,5,9,10,11,16,17,18,19,25,26,27,28,29,36,37,38,39,40,41,49,50,51,
%T A064801 52,53,54,55,64,65,66,67,68,69,70,71,81,82,83,84,85,86,87,88,89,100,
%U A064801 101,102,103,104,105,106,107,108,109,121,122,123,124,125,126,127,128
%N A064801 Take 1, skip 2, take 2, skip 3, take 3, etc.
%C A064801 A253607(a(n)) < 0. - _Reinhard Zumkeller_, Jan 05 2015
%C A064801 Integers m such that A000196(m) = A079643(m). - _Firas Melaih_, Dec 10 2020
%C A064801 Also possible values of floor(x*floor(x)) for real x >= 1. - _Jianing Song_, Feb 16 2021
%H A064801 Harry J. Smith, <a href="/A064801/b064801.txt">Table of n, a(n) for n = 1..1000</a>
%F A064801 a(n) = A004202(n) - 1.
%F A064801 Can be interpreted as a table read by rows: T(n,k) = n^2 + k, 0 <= k < n. T(n,k) = 0 iff k > A000196(n); T(n,0) = A000290(n); T(n,1) = A002522(n) for n > 1; T(n,2) = A010000(n) = A059100(n) for n > 2; T(n, n-3) = A014209(n-1) for n > 2; T(n, n-2) = A028552(n) for n > 1; T(n, n-1) = A028387(n-1); T(2*n+1, n) = A001107(n+1). - _Reinhard Zumkeller_, Nov 18 2003
%F A064801 Numbers k such that floor(sqrt(k)) * (floor(sqrt(k)) + 1) > k. - _Rainer Rosenthal_, Jul 19 2024
%p A064801 seq(`if`(floor(sqrt(k)) * (floor(sqrt(k)) + 1) > k, k, NULL), k = 0..2034); # a(1)..a(1000), _Rainer Rosenthal_, Jul 19 2024
%t A064801 a = Table[n, {n, 0, 200} ]; b = {}; Do[a = Drop[a, {1, n} ]; b = Append[b, Take[a, {1, n} ]]; a = Drop[a, {1, n} ], {n, 1, 14} ]; Flatten[b]
%t A064801 Flatten[Table[Range[n^2,n^2+n-1],{n,12}]] (* _Harvey P. Dale_, Dec 18 2015 *)
%o A064801 (PARI) { n=0; for (m=1, 10^9, s=m^2; a=0; for (k=0, m - 1, a=s+k; write("b064801.txt", n++, " ", a); if (n==1000, return)) ) } \\ _Harry J. Smith_, Sep 26 2009
%o A064801 (Haskell)
%o A064801 a064801 n = a064801_list !! (n-1)
%o A064801 a064801_list = f 1 [1..] where
%o A064801    f k xs = us ++ f (k + 1) (drop (k + 1) vs)
%o A064801             where (us, vs) = splitAt k xs
%o A064801 -- _Reinhard Zumkeller_, May 16 2014
%o A064801 (Python)
%o A064801 from math import isqrt  # after _Rainer Rosenthal_
%o A064801 def isA(k: int): return k < ((s:=isqrt(k)) * (s + 1))
%o A064801 print([k for k in range(129) if isA(k)]) # _Peter Luschny_, Jul 19 2024
%Y A064801 Cf. A007606, A004202, A048859.
%Y A064801 Cf. A061885 (complement), A253607.
%Y A064801 Cf. A136272.
%K A064801 easy,nonn
%O A064801 1,2
%A A064801 _Robert G. Wilson v_, Oct 21 2001