This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A064855 #16 Dec 30 2024 12:51:35 %S A064855 1,2,0,14,16,10,66,21,321,917,2037,1550,2420,15152,27439,46731,110953, %T A064855 137148,336949,703202,805647,181132,5835407,3343039,21816283,18528238, %U A064855 95129681,241918238,311938330,48698222,1539688558,3481498150,8104918325,13512884439,22365723609 %N A064855 a(n) = (((6^n mod 5^n) mod 4^n) mod 3^n) mod 2^n. %C A064855 A generalization of A002380, A064536 and A064854. It arises also as a coefficient (=c1) of 1^n=1 in a special (greedy) decomposition of 6^n into like powers as follows: 6^n = c5*5^n + c4*4^n + c3*3^n + c2*2^n + c1*1^n. %H A064855 Harry J. Smith, <a href="/A064855/b064855.txt">Table of n, a(n) for n = 1..200</a> %F A064855 n = 8: 6^8 = 1679616 = 4*390625 + 1*65536 + 7*6561 + 22*256 + 21*1 where a(8)=21, the last coefficient and here 6^8 is decomposed into 4 + 1 + 7 + 22 + 21 = 55 like (8th) powers. %t A064855 Table[Fold[Mod,6^n,Range[5,2,-1]^n],{n,40}] (* _Harvey P. Dale_, Mar 14 2011 *) %o A064855 (PARI) a(n) = { (((6^n%5^n)%4^n)%3^n)%2^n } \\ _Harry J. Smith_, Sep 28 2009 %Y A064855 Cf. A002380, A064536, A064854, A064855, A060692, A064628-A064631. %K A064855 nonn %O A064855 1,2 %A A064855 _Labos Elemer_, Oct 08 2001