A064870 The minimal number which has multiplicative persistence 6 in base n.
11262, 57596799, 30536, 6788, 4684, 1571, 439, 667, 1964, 683, 218, 857, 264, 278, 353, 393, 227, 382, 344, 311, 319, 307, 283, 417, 422, 381, 485, 436, 349, 431, 436, 449, 421, 469, 327, 575, 598, 483, 539, 413, 511, 517, 534, 641, 611, 609, 476, 479
Offset: 7
Examples
a(13) = 439 because 439 = [2'7'10]->[10'10]->[7'9]->[4'11]->[3'5]->[1'2]->[2] needs 6 steps and no fewer n.
Links
- Michael De Vlieger, Table of n, a(n) for n = 7..10000
- M. R. Diamond and D. D. Reidpath, A counterexample to a conjecture of Sloane and Erdos, J. Recreational Math., 1998 29(2), 89-92.
- Sascha Kurz, Persistence in different bases
- T. Lamont-Smith, Multiplicative Persistence and Absolute Multiplicative Persistence, J. Int. Seq., Vol. 24 (2021), Article 21.6.7.
- C. Rivera, Minimal prime with persistence p
- N. J. A. Sloane, The persistence of a number, J. Recreational Math., 6 (1973), 97-98.
- Eric Weisstein's World of Mathematics, Multiplicative Persistence
- Index entries for linear recurrences with constant coefficients, order 721.
Formula
a(n) = 7*n-[n/720] for n > 719.
Comments