This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A064871 #19 Mar 08 2025 11:09:13 %S A064871 1409794,68889,38200,17902874277,1494,2532,19526,15838,1101,15820,943, %T A064871 2674,2118,3275,412,3310,1593,440,478,2036,456,713,738,633,658,705, %U A064871 907,643,803,641,653,797,484,991,814,877,1079,767,840,575,930,843,710,880 %N A064871 The minimal number which has multiplicative persistence 7 in base n. %C A064871 The persistence of a number is the number of times you need to multiply the digits together before reaching a single digit. a(7) = 686285, a(8) seems not to exist. %H A064871 M. R. Diamond and D. D. Reidpath, <a href="http://www.mathe2.uni-bayreuth.de/sascha/oeis/persistence/PERSIST.PDF">A counterexample to a conjecture of Sloane and Erdos</a>, J. Recreational Math., 1998 29(2), 89-92. %H A064871 Sascha Kurz, <a href="http://www.mathe2.uni-bayreuth.de/sascha/oeis/persistence/persistence.html">Persistence in different bases</a> %H A064871 T. Lamont-Smith, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL24/Lamont/lamont5.html">Multiplicative Persistence and Absolute Multiplicative Persistence</a>, J. Int. Seq., Vol. 24 (2021), Article 21.6.7. %H A064871 C. Rivera, <a href="http://www.primepuzzles.net/puzzles/puzz_022.htm">Minimal prime with persistence p</a> %H A064871 N. J. A. Sloane, <a href="http://neilsloane.com/doc/persistence.html">The persistence of a number</a>, J. Recreational Math., 6 (1973), 97-98. %H A064871 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/MultiplicativePersistence.html">Multiplicative Persistence</a> %H A064871 <a href="/index/Rec#order_5041">Index entries for linear recurrences with constant coefficients</a>, order 5041. %F A064871 a(n) = 8*n-[n/5040] for n > 5039. %e A064871 a(9) = 1409794 because the persistence of 1409794 is 7. %Y A064871 Cf. A003001, A031346, A064867, A064868, A064869, A064870, A064872. %K A064871 base,easy,nonn %O A064871 9,1 %A A064871 _Sascha Kurz_, Oct 08 2001 %E A064871 Corrected by _R. J. Mathar_, Nov 02 2007