This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A064872 #17 Mar 08 2025 11:10:12 %S A064872 7577,130883,596667,3644381,2820,61773,2752,5136,7452,38631,2780,8015, %T A064872 2996,542,8611,4591,575,10586,2532,2681,2764,1016,4547,10151,1065,983, %U A064872 813,5431,900,1255,983,5179,5117,1190,982,1129,1501,1491,1471,1084 %N A064872 The minimal number which has multiplicative persistence 8 in base n. %C A064872 The persistence of a number is the number of times you need to multiply the digits together before reaching a single digit. a(7)=1086400325525346, a(10)=2677889, a(11)=757074, a(8) and a(9) seem not to exist. %H A064872 M. R. Diamond and D. D. Reidpath, <a href="http://www.mathe2.uni-bayreuth.de/sascha/oeis/persistence/PERSIST.PDF">A counterexample to a conjecture of Sloane and Erdos</a>, J. Recreational Math., 1998 29(2), 89-92. %H A064872 Sascha Kurz, <a href="http://www.mathe2.uni-bayreuth.de/sascha/oeis/persistence/persistence.html">Persistence in different bases</a> %H A064872 T. Lamont-Smith, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL24/Lamont/lamont5.html">Multiplicative Persistence and Absolute Multiplicative Persistence</a>, J. Int. Seq., Vol. 24 (2021), Article 21.6.7. %H A064872 C. Rivera, <a href="http://www.primepuzzles.net/puzzles/puzz_022.htm">Minimal prime with persistence p</a> %H A064872 N. J. A. Sloane, <a href="http://neilsloane.com/doc/persistence.html">The persistence of a number</a>, J. Recreational Math., 6 (1973), 97-98. %H A064872 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/MultiplicativePersistence.html">Multiplicative Persistence</a> %H A064872 <a href="/index/Rec#order_40321">Index entries for linear recurrences with constant coefficients</a>, order 40321. %F A064872 a(n) = 9*n-[n/40320] for n > 40319. %e A064872 a(13) = 7577 because 7577 is the fewest number with persistence 8 in base 13. %Y A064872 Cf. A003001, A031346, A064867, A064868, A064869, A064870, A064871. %K A064872 base,easy,nonn %O A064872 13,1 %A A064872 _Sascha Kurz_, Oct 08 2001