A064879 Triangle of numbers composed of certain generalized Catalan numbers.
1, 1, 1, 0, 1, 1, 0, 2, 1, 1, 0, 5, 4, 1, 1, 0, 14, 28, 6, 1, 1, 0, 42, 256, 81, 8, 1, 1, 0, 132, 2704, 1566, 176, 10, 1, 1, 0, 429, 31168, 36126, 5888, 325, 12, 1, 1, 0, 1430, 380608, 921456, 238848, 16750, 540, 14, 1
Offset: 0
Examples
{1}; {1,1}; {0,1,1}; {0,2,1,1}; {0,5,4,1,1}; ...
References
- B. Derrida, E. Domany and D. Mukamel, An exact solution of a one-dimensional asymmetric exclusion model with open boundaries, J. Stat. Phys. 69, 1992, 667-687; eqs. (20), (21), p. 672.
- B. Derrida, M. R. Evans, V. Hakim and V. Pasquier, Exact solution of a 1D asymmetric exclusion model using a matrix formulation, J. Phys. A 26, 1993, 1493-1517; eq. (39), p. 1501, also appendix A1, (A12) p. 1513.
- T. M. Liggett, Stochastic Interacting Systems: Contact, Voter and Exclusion Processes, Springer, 1999, p. 269.
Links
- W. Lang: First 10 rows.
Formula
a(n, m) = C(m, m; n-m) if n >= m, else 0, with C(m, m; n) := ((m^(2*(n-1)))/(n-1))*sum((k+1)*(k+2)*binomial(2*(n-2)-k, n-2-k)*((1/m)^(k+1)), k=0..n-2), n >= 2; C(m, m; 0) := 1=:C(m, m; 1).
G.f.: (x^m)*(1+(1-2*m)*x*c(x*m^2))/(1-m*x*c(x*m^2))^2 = (x^m)*((2*m-1)*c(x*m^2)*(m*x)^2 +(1-m)*(1-m+(1-3*m)*x))/(1-m-m*x)^2, m >= 0. For m >= 1 also: (x^m)*c(x*m^2)*(2*m-1+c(x*m^2)*(m-1)^2)/(1+(m-1)*c(x*m^2))^2.
In the G.f. the g.f. c(x) of A000108 (Catalan) appears.
Comments