This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A064894 #21 Feb 13 2024 09:57:39 %S A064894 0,0,1,1,2,2,1,1,3,3,1,1,1,1,1,1,4,4,1,1,2,2,1,1,1,1,1,1,1,1,1,1,5,5, %T A064894 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,1,1, %U A064894 2,2,1,1,3,3,1,1,1,1,1,1,2,2,1,1,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 %N A064894 Binary dilution of n. GCD of exponents in binary expansion of n. %C A064894 All bits of n in positions not divisible by a(n) are zero. Hence n in binary contains blocks of a(n)-1 "diluting" 0's (for n>1). Also for n>1, a(2^n) = a(2^n + 1) = n. For i,j odd, a(ij) = GCD(a(i),a(j)). %H A064894 Peter Kagey, <a href="/A064894/b064894.txt">Table of n, a(n) for n = 0..10000</a> %F A064894 If n = 2^e0 + 2^e1 +... then a(n) = GCD(e0, e1, ...). %F A064894 a(A064896(n)) = A056538(n) %e A064894 577 = 2^0 + 2^6 + 2^9, GCD(0,6,9) = 3 = a(577). %t A064894 A064894[n_] := Apply[GCD, Flatten[Position[Reverse[IntegerDigits[n, 2]], 1]] - 1]; %t A064894 Array[A064894, 100, 0] (* _Paolo Xausa_, Feb 13 2024 *) %o A064894 (PARI) a(n) = if (n==0, 0, my(ve = select(x->x==1, Vecrev(binary(n)), 1)); gcd(vector(#ve, k, ve[k]-1))); \\ _Michel Marcus_, Apr 12 2016 %Y A064894 Cf. A000079, A064895, A064896, A056538. %K A064894 base,easy,nonn %O A064894 0,5 %A A064894 _Marc LeBrun_, Oct 11 2001