cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064894 Binary dilution of n. GCD of exponents in binary expansion of n.

This page as a plain text file.
%I A064894 #21 Feb 13 2024 09:57:39
%S A064894 0,0,1,1,2,2,1,1,3,3,1,1,1,1,1,1,4,4,1,1,2,2,1,1,1,1,1,1,1,1,1,1,5,5,
%T A064894 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,6,1,1,
%U A064894 2,2,1,1,3,3,1,1,1,1,1,1,2,2,1,1,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
%N A064894 Binary dilution of n. GCD of exponents in binary expansion of n.
%C A064894 All bits of n in positions not divisible by a(n) are zero. Hence n in binary contains blocks of a(n)-1 "diluting" 0's (for n>1). Also for n>1, a(2^n) = a(2^n + 1) = n. For i,j odd, a(ij) = GCD(a(i),a(j)).
%H A064894 Peter Kagey, <a href="/A064894/b064894.txt">Table of n, a(n) for n = 0..10000</a>
%F A064894 If n = 2^e0 + 2^e1 +... then a(n) = GCD(e0, e1, ...).
%F A064894 a(A064896(n)) = A056538(n)
%e A064894 577 = 2^0 + 2^6 + 2^9, GCD(0,6,9) = 3 = a(577).
%t A064894 A064894[n_] := Apply[GCD, Flatten[Position[Reverse[IntegerDigits[n, 2]], 1]] - 1];
%t A064894 Array[A064894, 100, 0] (* _Paolo Xausa_, Feb 13 2024 *)
%o A064894 (PARI) a(n) = if (n==0, 0, my(ve = select(x->x==1, Vecrev(binary(n)), 1)); gcd(vector(#ve, k, ve[k]-1))); \\ _Michel Marcus_, Apr 12 2016
%Y A064894 Cf. A000079, A064895, A064896, A056538.
%K A064894 base,easy,nonn
%O A064894 0,5
%A A064894 _Marc LeBrun_, Oct 11 2001