This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A064901 #30 Apr 16 2018 19:10:17 %S A064901 65,115,119,215,217,265,365,377,413,415,511,515,517,565,629,707,779, %T A064901 815,865,965,1099,1115,1165,1207,1243,1315,1391,1393,1415,1465,1501, %U A064901 1565,1589,1687,1727,1765,1769,1865,1883,1915,1969,1981,2165,2177,2215 %N A064901 Semiprimes p1*p2 such that p2 > p1 and p2 mod p1 = 3. %C A064901 The semiprimes must be squarefree, since p1 does not divide p2. - _Michael De Vlieger_, Apr 12 2018 %H A064901 John Cerkan, <a href="/A064901/b064901.txt">Table of n, a(n) for n = 1..10000</a> %t A064901 Select[Range@ 2215, And[#[[All, -1]] == {1, 1}, Mod[#2, #1] == 3 & @@ #[[All, 1]]] &@ FactorInteger[#] &] (* _Michael De Vlieger_, Apr 12 2018 *) %o A064901 (Python) %o A064901 from sympy import factorint %o A064901 def is_A064901(n): %o A064901 f = factorint(n) %o A064901 return (sum([f[i] for i in f]) == 2) and (max(f) % min(f) == 3) %o A064901 def first_A064901(n): %o A064901 x = 1 %o A064901 an = [] %o A064901 while len(an) < n: %o A064901 if is_A064901(x): an.append(x) %o A064901 x += 2 %o A064901 return an # _John Cerkan_, Apr 14 2018 %o A064901 (PARI) isok(n) = my(f = factor(n)); (#f~ == 2) && (vecmax(f[,2]) < 2) && ((f[2,1] % f[1,1]) == 3); \\ _Michel Marcus_, Apr 16 2018 %Y A064901 Cf. A001358 (p2 mod p1 = 0), A006881, A064899-A064911. %K A064901 nonn %O A064901 1,1 %A A064901 _Patrick De Geest_, Oct 13 2001 %E A064901 Name clarified by _John Cerkan_, Apr 13 2018