This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A064902 #22 Apr 16 2018 19:10:45 %S A064902 77,95,145,221,295,371,395,407,437,445,469,545,559,649,695,745,763, %T A064902 895,959,995,1057,1133,1145,1159,1195,1253,1345,1351,1513,1517,1679, %U A064902 1745,1795,1841,1895,1939,1945,2021,2045,2095,2101,2195,2245,2249,2395,2429 %N A064902 Semiprimes p1*p2 such that p2 mod p1 = 4, with p2 > p1. %H A064902 John Cerkan, <a href="/A064902/b064902.txt">Table of n, a(n) for n = 1..10000</a> %o A064902 (Python) %o A064902 from sympy import factorint %o A064902 def is_A064902(n): %o A064902 f = factorint(n) %o A064902 return (sum([f[i] for i in f]) == 2) and (max(f) % min(f) == 4) %o A064902 def first_A064902(n): %o A064902 x = 1 %o A064902 an = [] %o A064902 while len(an) < n: %o A064902 if is_A064902(x):an.append(x) %o A064902 n += 2 %o A064902 return an # _John Cerkan_, Apr 14 2018 %o A064902 (PARI) isok(n) = my(f = factor(n)); (#f~ == 2) && (vecmax(f[,2]) < 2) && ((f[2,1] % f[1,1]) == 4); \\ _Michel Marcus_, Apr 16 2018 %Y A064902 Cf. A001358 (p2 mod p1 = 0), A064899-A064911. %K A064902 nonn %O A064902 1,1 %A A064902 _Patrick De Geest_, Oct 13 2001 %E A064902 Offset changed by _John Cerkan_, Apr 12 2018